Skip to main content

The Role of Transfer Operators and Shifts in the Study of Fractals: Encoding-Models, Analysis and Geometry, Commutative and Non-commutative

  • Conference paper
  • First Online:
Geometry and Analysis of Fractals

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 88))

Abstract

We study a class of dynamical systems in \(L^2\) spaces of infinite products \(X\). Fix a compact Hausdorff space \(B\). Our setting encompasses such cases when the dynamics on \(X = B^\mathbb {N}\) is determined by the one-sided shift in \(X\), and by a given transition-operator \(R\). Our results apply to any positive operator \(R\) in \(C(B)\) such that \(R1 = 1\). From this we obtain induced measures \(\Sigma \) on \(X\), and we study spectral theory in the associated \(L^2(X,\Sigma )\). For the second class of dynamics, we introduce a fixed endomorphism \(r\) in the base space \(B\), and specialize to the induced solenoid \(\mathrm{Sol }(r)\). The solenoid \(\mathrm{Sol }(r)\) is then naturally embedded in \(X = B^\mathbb {N}\), and \(r\) induces an automorphism in \(\mathrm{Sol }(r)\). The induced systems will then live in \(L^2(\mathrm{Sol }(r), \Sigma )\). The applications include wavelet analysis, both in the classical setting of \(\mathbb {R}^n\), and Cantor-wavelets in the setting of fractals induced by affine iterated function systems (IFS). But our solenoid analysis includes such hyperbolic systems as the Smale-Williams attractor, with the endomorphism \(r\) there prescribed to preserve a foliation by meridional disks. And our setting includes the study of Julia set-attractors in complex dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpay, D., Jorgensen, P.E.T.: Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33(7–9), 708–735 (2012)

    Google Scholar 

  2. Antonevich, A.B., Bakhtin, V.I., Lebedev, A.V.: Crossed product of a \(C^*\)-algebra by an endomorphism, coefficient algebras, and transfer operators. Mat. Sb. 202(9), 3–34 (2011)

    Article  MathSciNet  Google Scholar 

  3. Antonevich, A.B., Bakhtin, V.I., Lebedev, A.V.: A road to the spectral radius of transfer operators. In: Dynamical Systems and Group Actions, volume 567 of Contemp. Math., pages 17–51. Amer. Math. Soc., Providence, RI, 2012

    Google Scholar 

  4. Arveson, William: Markov operators and OS-positive processes. J. Funct. Anal. 66(2), 173–234 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baladi, V.: Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, vol. 16. World Scientific Publishing Co., Inc., River Edge (2000)

    Google Scholar 

  6. Beardon, A.F., Carne, T.K., Minda, D., Ng, T.W.: Random iteration of analytic maps. Ergodic Theor. Dyn. Syst. 24(3), 659–675 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bratteli, O., Jorgensen, P.: Wavelets Through a Looking Glass, Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2002). The world of the spectrum

    Google Scholar 

  8. Chazottes, J.-R., Gambaudo, J.-M., Hochman, M., Ugalde, E.: On the finite-dimensional marginals of shift-invariant measures. Ergodic Theor. Dyn. Syst. 32(5), 1485–1500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Courbage, M., Hamdan, D.: Chapman-Kolmogorov equation for non-Markovian shift-invariant measures. Ann. Prob. 22(3), 1662–1677 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol. 61. Philadelphia, PA (1992)

    Google Scholar 

  11. D’Andrea, J., Merrill, K.D., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space. In Frames and operator theory in analysis and signal processing, volume 451 of Contemp. Math., pages 69–88. Amer. Math. Soc., Providence, RI, (2008)

    Google Scholar 

  12. Dutkay, D.E., Han, D., Sun, Q., Weber, E.: On the Beurling dimension of exponential frames. Adv. Math. 226(1), 285–297 (2011)

    Google Scholar 

  13. Dutkay D.E., Jorgensen, P.E.T.: Hilbert spaces of martingales supporting certain substitution-dynamical systems. Conform. Geom. Dyn. 9(electronic), 24–45 (2005)

    Google Scholar 

  14. Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on fractals. Rev. Mat. Iberoam. 22(1), 131–180 (2006)

    Google Scholar 

  15. Dutkay, D.E., Jorgensen, P.E.T.: Martingales, endomorphisms, and covariant systems of operators in Hilbert space. J. Oper. Theor. 58(2), 269–310 (2007)

    Google Scholar 

  16. Dutkay, D.E., Jorgensen, P.E.T.: Spectral theory for discrete Laplacians. Complex Anal. Oper. Theory 4(1), 1–38 (2010)

    Google Scholar 

  17. Dutkay, D.E., Jorgensen, P.E.T.: Affine fractals as boundaries and their harmonic analysis. Proc. Amer. Math. Soc. 139(9), 3291–3305 (2011)

    Google Scholar 

  18. Dutkay, D.E., Jorgensen, P.E.T.: Spectral duality for unbounded operators. J. Oper. Theory 65(2), 325–353 (2011)

    Google Scholar 

  19. Dutkay, D.E., Jorgensen, P.E.T.: Fourier duality for fractal measures with affine scales. Math. Comp. 81(280), 2253–2273 (2012)

    Google Scholar 

  20. Dutkay, D.E., Jorgensen, P.E.T, Picioroaga, G.: Unitary representations of wavelet groups and encoding of iterated function systems in solenoids. Ergodic Theor. Dyn. Syst. 29(6), 1815–1852 (2009)

    Google Scholar 

  21. Dutkay, D.E., Jorgensen, P.E.T., Silvestrov, S.: Decomposition of wavelet representations and Martin boundaries. J. Funct. Anal. 262(3), 1043–1061 (2012)

    Google Scholar 

  22. Dong, X.-H., Lau, K.-S.: Cantor boundary behavior of analytic functions. In Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., pages 283–294. Birkhäuser Boston Inc., Boston, MA, 2010

    Google Scholar 

  23. Dutkay, D.E., Larson, D.R., Silvestrov, S.: Irreducible wavelet representations and ergodic automorphisms on solenoids. Oper. Matrices 5(2), 201–219 (2011)

    Google Scholar 

  24. Dutkay, D.E., Silvestrov, S.: Reducibility of the wavelet representation associated to the Cantor set. Proc. Amer. Math. Soc. 139(10), 3657–3664 (2011)

    Google Scholar 

  25. Dutkay, D.E.: Low-pass filters and representations of the Baumslag Solitar group. Trans. Amer. Math. Soc. 358(12), 5271–5291 (electronic) (2006)

    Google Scholar 

  26. Fraczek, M., Mayer, D.: Symmetries of the transfer operator for \(\Gamma _0(N)\) and a character deformation of the Selberg zeta function for \(\Gamma _0(4)\). Algebra Number Theory 6(3), 587–610 (2012)

    Google Scholar 

  27. Hensley, D.: Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete Contin. Dyn. Syst. 32(7), 2417–2436 (2012)

    Google Scholar 

  28. Jorgensen, P.E.T., Pearse, E.P.J.: A Hilbert space approach to effective resistance metric. Complex Anal. Oper. Theory 4(4), 975–1013 (2010)

    Google Scholar 

  29. Jorgensen, P.E.T., Pearse, E.P.J.: Ge’fand triples and boundaries of infinite networks. New York J. Math. 17, 745–781 (2011)

    Google Scholar 

  30. Kuznetsov, S.P., Pikovsky, A.: Autonomous coupled oscillators with hyperbolic strange attractors. Phys. D 232(2), 87–102 (2007)

    Google Scholar 

  31. Kuznetsov, S.P.: Example of blue sky catastrophe accompanied by a birth of Smale-Williams attractor. Regul. Chaotic Dyn. 15(2–3), 348–353 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kwaśniewski, B.K.: On transfer operators for \(C^*\)-dynamical systems. Rocky Mountain J. Math. 42(3), 919–936 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lau, K.-S., Ngai, S.-M.: Martin boundary and exit space on the Sierpinski gasket. Sci. China Math. 55(3), 475–494 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lanford III, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys. 13, 194–215 (1969)

    Article  MathSciNet  Google Scholar 

  35. Lau, K.-S., Wang, X.-Y.: Self-similar sets as hyperbolic boundaries. Indiana Univ. Math. J. 58(4), 1777–1795 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Marcolli, M., Paolucci, A.M.: Cuntz-Krieger algebras and wavelets on fractals. Complex Anal. Oper. Theory 5(1), 41–81 (2011)

    Google Scholar 

  37. Mayer, D., Mühlenbruch, T., Strömberg, F.: The transfer operator for the Hecke triangle groups. Discrete Contin. Dyn. Syst. 32(7), 2453–2484 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Naud, F.: The Ruelle spectrum of generic transfer operators. Discrete Contin. Dyn. Syst. 32(7), 2521–2531 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ruelle, D.: Sharp zeta functions for smooth interval maps. In: International Conference on Dynamical Systems (Montevideo, 1995), volume 362 of Pitman Res. Notes Math. Ser., pages 188–206. Longman, Harlow, 1996.

    Google Scholar 

  40. Ruelle, D.: Dynamical zeta functions and transfer operators. Notices Amer. Math. Soc. 49(8), 887–895 (2002)

    MATH  MathSciNet  Google Scholar 

  41. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics. Cambridge Mathematical Library, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Acknowledgments

One of the authors wishes to thank Professors Ka-Sing Lau, De-Jun Feng, and their colleagues, for organizing a wonderful conference in Hong-Kong, “The International Conference on Advances of Fractals and Related Topics”, December 2012. Many discussions with participants at the conference inspired this paper. This work was partially supported by a grant from the Simons Foundation (#228539 to Dorin Dutkay).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dutkay, D.E., Jorgensen, P.E.T. (2014). The Role of Transfer Operators and Shifts in the Study of Fractals: Encoding-Models, Analysis and Geometry, Commutative and Non-commutative. In: Feng, DJ., Lau, KS. (eds) Geometry and Analysis of Fractals. Springer Proceedings in Mathematics & Statistics, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43920-3_3

Download citation

Publish with us

Policies and ethics