Advertisement

On the Success and Limitations of Reductionism in Physics

Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Reductionism in physics is understood here as a methodological reductionism. It involves the attempt to reduce explanations to smaller constituents and to explain phenomena in terms of relations between more fundamental entities. Responsible for the great success of reductionism in physics are a number of underlying principles and tools that we shall illustrate with examples from different branches of physics, and in particular condensed matter physics. After achieving a deeper insight into these successes one might be tempted to claim that physics is able to explain “The World” and establish a “Theory of Everything”. In response to this we shall point out some concrete limitations of reductionism, while at the same time highlighting the necessity of other disciplines in both the natural and social sciences if we are to achieve a full understanding of the plethora of phenomena they deal with. In conclusion we indicate that although one may attempt to develop a universal theory of complex systems, such a theory would not be able to explain complex systems in all their facets.

Keywords

Dark Matter Renormalization Group Gauge Field Coarse Scale Parallel Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, P.W.: More and Different, p. 359. World Scientific, Singapore (2011)CrossRefGoogle Scholar
  2. Bartelmann, M.: Structure formation in the universe. In: Meyer-Ortmanns, H., Thurner, S. (eds.) Principles of Evolution: From the Planck Epoch to Complex Multicellular Life, pp. 189–204. Springer, Berlin (2011)Google Scholar
  3. Bhattacharya, N., et al.: Implementation of quantum search algorithm using classical fourier optics. Phys. Rev. Lett. 88, 137901-1–137901-4 (2002)CrossRefADSGoogle Scholar
  4. Bustamente, C., et al.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)CrossRefADSGoogle Scholar
  5. Ellwanger, U., et al.: Evolution equations for the quark-meson transition. Nucl. Phys. B 423, 137–170 (1994)CrossRefADSGoogle Scholar
  6. Fratzl, P., Weinkammer, R.: Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007)CrossRefGoogle Scholar
  7. Freddolino, P.L., et al.: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006)CrossRefGoogle Scholar
  8. Frey, E.: Evolutionary game theory: theoretical concepts and applications to microbial communities. Phys. A 389, 4265–4298 (2010)CrossRefMATHMathSciNetGoogle Scholar
  9. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)CrossRefGoogle Scholar
  10. Glashow, S.L.: Partial symmetries of weak interactions. Nucl. Phys. 22(4), 579588 (1961)CrossRefGoogle Scholar
  11. Gross, P., et al.: Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 7, 731–736 (2011)CrossRefGoogle Scholar
  12. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 78, 325–328 (1997)CrossRefADSGoogle Scholar
  13. Hehl, F.W., et al.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)CrossRefADSMathSciNetGoogle Scholar
  14. Kadanoff, L.P.: The application of renormalization group techniques to quarks and strings. Rev. Mod. Phys. 49, 267–296 (1977)CrossRefADSMathSciNetGoogle Scholar
  15. Khaleel, M.A.: Scientific grand challenges: forefront questions in nuclear science and the role of high performance computing. Report from the workshop, 26–28 Jan 2009, report number: PNNL-18739, pp. 1–255 (2009). doi: 10.2172/968204
  16. Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–222 (1961)CrossRefADSMATHMathSciNetGoogle Scholar
  17. Kogut, J., Wilson, K.: The renormalization group and the \(\epsilon\)-expansion. Phys. Rep. 12C, 75–199 (1974)Google Scholar
  18. Mack, G.: Physical principles, geometrical aspects and locality of gauge field theories. Fortschritte der Physik 81, 135–185 (1981)CrossRefADSMathSciNetGoogle Scholar
  19. Mack, G.: Universal dynamics, a unified theory of complex systems, emergence, life and death. Commun. Math. Phys. 219, 141–178 (2001)CrossRefADSMATHMathSciNetGoogle Scholar
  20. May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975)CrossRefMATHMathSciNetGoogle Scholar
  21. Meyer-Ortmanns, H., Reisz, T.: Principles of phase transitions in particle physics. World Scientific Lecture Notes in Physics, vol. 77. World Scientific, Singapore (2007)Google Scholar
  22. Mobilia, M., Georgiev, IT., U.C.T.: Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka-Volterra models. J. Stat. Phys. 128(1), 447–483 (2007)Google Scholar
  23. Murray J.D.: A pattern formation mechanism and its application to mammalian coat markings. In: ‘Vito Volterra’ Symposium on Mathematical Models in Biology. Academia dei Lincei, Rome, Dec 1979. Lecture Notes in Biomathematics, vol. 39, pp. 360–399. Springer, Berlin (1980)Google Scholar
  24. Murray, J.D.: A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161–199 (1981)CrossRefGoogle Scholar
  25. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, Berlin (1993)CrossRefGoogle Scholar
  26. O’Raifeartaigh, L.: The Dawning of Gauge Theories. Princeton University Press, Princeton (1997)Google Scholar
  27. Patel, A.: Quantum algorithms and the genetic code. Pramana 56, 365–376 (2001)ADSGoogle Scholar
  28. Ramond, P.: Field Theory: A Modern Primer. Addison-Wesley, Redwood City (1989)Google Scholar
  29. Rindler, W.: Essential Relativity. Van Nostrand Reinhold Company, New York (1969)CrossRefMATHGoogle Scholar
  30. Salam, A.: Weak and electromagnetic interactions. In: Svartholm, N. (ed.) Elementary Particle Physics: Relativistic Groups and Analyticity, vol. 8, pp. 367–377. Proceedings of the nobel symposium (1968)Google Scholar
  31. Sciama, D.W.: Recent Developments in General Relativity. Pergamon Press, Oxford (1962)Google Scholar
  32. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B327, 32–72 (1952)Google Scholar
  33. Wang, R., Gupta, H.S.: Deformation and fracture mechanisms of bone and nacre. Ann. Rev. Mat. Res. 41, 41–73 (2011)CrossRefADSGoogle Scholar
  34. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)CrossRefADSGoogle Scholar
  35. Weyl, H.: Space, Time, Matter. Springer, Berlin (1922)MATHGoogle Scholar
  36. Wilson, K.G.: The renormalization group: critical phenomena and the kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)CrossRefADSGoogle Scholar
  37. Yakusheich, L.V.: Nonlinear Physics of DNA. Wiley, Chichester (1998)Google Scholar
  38. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)CrossRefADSMathSciNetGoogle Scholar
  39. Yeomans, J.M.: Statistical Mechanics of Phase Transitions. Clarendon Press, Oxford (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Jacobs UniversityBremenGermany

Personalised recommendations