Skip to main content

Analysis of Physical Cutting Mechanisms and Their Effects on the Tool Wear and Chip Formation Process When Machining Aeronautical Titanium Alloys: Ti-6Al-4V and Ti-55531

  • Chapter
  • First Online:

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

The current research deals with the analysis of physical cutting mechanisms involved during the machining process of titanium alloys: Ti-6Al-4V and Ti-55531. The objective is to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations have been focused on the mechanisms of chip formation and their interaction with tool wear. At the microstructure scale, the analysis confirms the intense deformation of the machined surface and shows a texture modification. As the cutting speed increases, cutting forces and temperature show different progressions depending on the considered microstructure Ti-6Al-4V or Ti-55531 alloy. Results show for both materials that the wear process is facilitated by the high cutting temperature and the generation of high stresses. The analysis at the chip-tool interface of friction and contact nature (sliding or sticking contact) shows that the machining Ti-55531 often exhibits an abrasion wear process on the tool surface, while the adhesion and diffusion modes followed by coating delamination process are the main wear modes when machining the usual Ti-6Al-4V alloy. Moreover, the proposed study describe the real effect on machining of the tool geometry, coating and lubrication. Finally, the investigations allow to identify some ways to improve the machinability of these alloys, particularly the Ti-55531 alloy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng 213A:103–114

    Article  Google Scholar 

  2. Ginting A, Nouari M (2009) Surface integrity of dry machined titanium alloys. Int J Mach Tools Manuf 49(3–4):325–332

    Article  Google Scholar 

  3. Clément N, Lenain A, Jacques PJ (2007) Mechanical property optimization via microstructural control of new metastable beta Titanium alloys, processing and characterizing Titanium alloys overview. JOM 59:50–53

    Google Scholar 

  4. Clement N et al (2005) In: JM Howe et al (ed) Proceedings of international conference solid-solid phase transformations in inorganic materials. TMS, Warrendale, PA, pp 603–608

    Google Scholar 

  5. Nouari M, Ginting A (2006) Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surf Coat Technol 200(18–19):5663–5676

    Article  Google Scholar 

  6. Ginting A, Nouari M (2006) Experimental and numerical studies on the performance of alloyed carbide tool in dry milling of aerospace material. Int J Mach Tools Manuf 46(7–8):758–768

    Article  Google Scholar 

  7. Nouari M, Makich H (2013) Experimental investigation on the effect of the material microstructure on tool wear when machining hard titanium alloys: Ti-6Al-4V and Ti-555. Int J Refract Metal Hard Mater 41:259–269

    Article  Google Scholar 

  8. Ginting A, Nouari M (2007) Optimal cutting conditions when dry end milling the aeroengine material Ti-6242S. J Mater Process Technol 184:319–324

    Article  Google Scholar 

  9. Komanduri R (1981) Turkovich B.F.V., new observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188

    Article  Google Scholar 

  10. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274

    Google Scholar 

  11. Subramanian SV, Ingle SS, Kay DAR (1993) Design of coatings to minimize tool crater wear. Surf Coat Tech 61:293–299

    Article  Google Scholar 

  12. Bouchnak TB (2010) Etude du comportement en sollicitations extrêmes et de l’usinabilité d’un nouvel alliage de titane aéronautique, PhD thesis, Ref. 2010-ENAM-0051, Arts et Métiers ParisTech—Centre d’Angers

    Google Scholar 

  13. Fanning JC (2005) Properties of TIMETAL 555 (Ti-5Al-5Mo-5 V-3Cr-0.6Fe). JMEPEG 14:788–791

    Google Scholar 

  14. Nyakana SL, Fanning JC, Boyer RR (2005) JMEPEG 14:799–811

    Article  Google Scholar 

  15. Semiatin SL (1999) Seetharaman V, Ghosh AK (1999) Plastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures. Philos Trans R Soc A: Mathe Phys Eng Sci 357(1756):1487–1512

    Article  Google Scholar 

  16. Jackson M, Dashwood R, Christodoulou L, Flower H (2005) The microstructural evolution of near beta alloy Ti-10 V-2Fe-3Al during subtransus forging. Metall Mater Trans A 36:1317–1327

    Article  Google Scholar 

  17. Benedetti M, Fontanari V (2004) The effect of bi-modal and lamellar microstructures of Ti-6Al-4V on the behaviour of fatigue cracks emanating from edge-notches. Fatigue Fract Eng Mater Struct 27:1073–1089

    Article  Google Scholar 

  18. Nouari M, Calamaz M, Girot F (2008) Mécanismes d’usure des outils coupants en usinage à sec de l’alliage de titane aéronautique Ti-6Al-4V, C.R. Mécanique 336:772–781

    Google Scholar 

  19. Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D (2007) Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear 262(7–8):931–942

    Article  Google Scholar 

  20. Singh Gill S, Singh R, Singh H, Singh J (2011) Investigation onwear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning. Int J Mach Tools Manuf 51(1):25–33

    Google Scholar 

  21. Castanho J, Vieira M (2003) Effect of ductile layers in mechanical behaviour of TiAlN thin coatings. J Mater Process Technol 143:352–357

    Article  Google Scholar 

  22. Battagliaa JL, Coisb O, Puigsegura L, Oustaloupb A (2001) Solving an inverse heat conduction problem using a non-integer identified model. Int J Heat Mass Transfer 44:2671–2680

    Google Scholar 

  23. Puerta Velasquez JD, Bolle B, Chevrier P, Geandier G, Tidu A (2007) Metallurgical study on chips obtained by high speed machining of a Ti–6 wt%Al–4 wt%V alloy. Mater Sci Eng A 452–453, 469–474

    Google Scholar 

  24. He Yi (2005) Rapid thermal conductivity measurement with a hot disk sensor: part 1. Theoret Considerations Thermochim Acta 436:122–129

    Article  Google Scholar 

  25. Abdel-Aal HA, Nouari M, Mansori ELM (2009) Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys. Wear 266:432–443

    Google Scholar 

  26. Merchant E (1945) Mechanics of the metal cutting process II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324

    Article  Google Scholar 

  27. Merchant E (1945) Mechanics of the metal cutting process I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275

    Article  Google Scholar 

  28. Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34

    Article  Google Scholar 

  29. Powell BE, Duggan TV (1986) Predicting the onset of high cycle fatigue damage: an engineering application for long crack fatigue threshold data. Int J Fatigue 8:187–194

    Article  Google Scholar 

  30. Arrazola P-J, Garay A, Iriarte L-M, Armendia M, Marya S, Le Maître F (2009) Machinability of titanium alloys (Ti6Al4 V and Ti555.3). J Mater Process Technol 209:2223–2230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Nouari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nouari, M., Makich, H. (2014). Analysis of Physical Cutting Mechanisms and Their Effects on the Tool Wear and Chip Formation Process When Machining Aeronautical Titanium Alloys: Ti-6Al-4V and Ti-55531. In: Davim, J. (eds) Machining of Titanium Alloys. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43902-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43902-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43901-2

  • Online ISBN: 978-3-662-43902-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics