Skip to main content

Vesicles and Composite Particles by Rotating Membrane Pore Extrusion

  • Chapter
  • First Online:
Upscaling of Bio-Nano-Processes

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

We present an innovative processing route based on dynamic membrane pore extrusion and multiphase flow, which allows for the controlled production of particle and core-shell microstructures with tailored techno-functional properties. In the context of MagPro2Life, two scalable continuous processes based on this technology were specifically designed and implemented for the preparation of (i) surface functionalized magnetic composite particles and (ii) functional vesicles, using two respective devices: (i) a novel ROtating MEmbrane Reactor (ROMER) device and (ii) a NAno Membrane Pore EXtruder (NAMPEX) device. Extrusion and detachment of liquid drops and vesicles from pores in a surrounding immiscible continuous fluid phase under various flow conditions like co-flow, flow focusing and cross flow have been studied intensively at our Laboratory of Food process Engineering for a variety of different rheological and interfacial material characteristics within the past decade. Drop- and capsule deformation and breakup were studied in mechanistic detail utilizing in particular microfluidics technology. The coupling of drop/capsule formation with functionalization steps by either entrapment/encapsulation of components for controlled release or surface/interface modification for adjusted and more or less specific adsorption characteristics have been addressed with respect to the overarching goal of the project being the separation of specific protein fractions from soy whey streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamse A, van der Padt A, Boom R, de Heij W (2001) Process fundamentals of membrane emulsification: simulation with CFD. AIChE J 47:1285–1291

    Article  CAS  Google Scholar 

  • Abrahamse AJ, van Lierop R, van der Sman RGM, van der Padt A, Boom RM (2002) Analysis of droplet formation and interactions during cross-flow membrane emulsification. J Membr Sci 204:125–137

    Article  CAS  Google Scholar 

  • Bally M, Bailey K, Sugihara K, Grieshaber D, Voros J, Stadler B (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497

    Article  CAS  Google Scholar 

  • Breitschuh B (1998) Continuous dry fractionation of milk-fat. Laboratory of food process engineering. PhD thesis, ETH Zürich, Zürich

    Google Scholar 

  • Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7:49–60

    CAS  Google Scholar 

  • Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79:209–218

    Article  CAS  Google Scholar 

  • Cramer C, Beruter B, Fischer P, Windhab E (2002) Liquid Jet stability in a laminar flow field. Chem Eng Technol 25:499–506

    Article  CAS  Google Scholar 

  • der Graaf S Van, Steegmans MLJ, van der Sman RGM, Schröen CGPH, Boom RM (2005) Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Colloids Surf A: Phys-Chem Eng 266:106–116

    Article  Google Scholar 

  • Eisner V (2007) Emulsion processing with a rotating membrane (ROME). Laboratory of Food Process Engineering. PhD thesis, ETH Zürich, Zürich. ISBN 3-905609-32-0

    Google Scholar 

  • Ellenberger J, Fortuin J (1985) A criterion for purely tangential laminar flow in the cone-and-plate rheometer and the parallel-plate rheometer. Chem Eng Sci 40:111–116

    Article  CAS  Google Scholar 

  • Engel H, Rondeau E, Windhab E, Walde E (2013) External surface area determination of lipid vesicles using trinitrobenzene sulfonate (TNBS) and UV/Vis spectrophotometry. Anal Biochem 442:262–271

    Google Scholar 

  • Feigl K, Tanner FX, Windhab EJ, Simos TE, Psihoyios G, Tsitouras C (2010) Numerical investigation of the formation and detachment of droplets from pores in a shear flow field. AIP Conf Proc 1281:1684–1687

    Article  Google Scholar 

  • Frisken BJ, Asman C, Patty PJ (2000) Studies of vesicle extrusion. Langmuir 16:928–933

    Article  CAS  Google Scholar 

  • Fröhlich M, Brecht V, Peschka-Süss R (2001) Parameters influencing the determination of liposome lamellarity by P-31-NMR. Chem Phys Lipids 109:103–112

    Article  Google Scholar 

  • Garnier B, Tan S, Miraux S, Bled E, Brisson AR (2012) Optimized synthesis of 100 nm diameter magnetoliposomes with hight content of maghemite particles and high MRI effect. Contrast Media Mol Imaging 7:231–239

    Article  CAS  Google Scholar 

  • Geerken MJ, Lammertink RGH, Wessling M (2007) Tailoring surface properties for controlling droplet formation at microsieve membranes. Colloid Surf A 292:224–235

    Article  CAS  Google Scholar 

  • Graber M (2010) Transport phenomena in rotating membrane processed W/O/W emulsions. Laboratory of food process engineering. PhD thesis, ETH Zürich, Zürich. ISBN 978-3-905609-46-2

    Google Scholar 

  • Gruber HJ, Schindler H (1994) External surface and lamellarity of lipid vesicles—a practice-oriented set of assay methods. Biochim Biophys Acta-Biomembr 1189:212–224

    Article  CAS  Google Scholar 

  • Holzapfel S, Mühlich P, Rondeau E, Windhab EJ (2014) Drop detachment from micro engineered membrane surface in a dynamic membrane emulsification process

    Google Scholar 

  • Joscelyne G SM (2000) Tragardh Membrane emulsification—a literature review. J Membr Sci 169:107–117

    Article  Google Scholar 

  • Kaspar P (2012) Active photonic crystal devices based on InP/InGaAsP/InP Slab waveguides. PhD thesis, ETH Zürich, Zürich

    Google Scholar 

  • Kim KT, Meeuwissen SA, Nolte RJM, van Hest JCM (2010) Smart nanocontainers and nanoreactors. Nanoscale 2:844–858

    Article  CAS  Google Scholar 

  • Kobayashi I, Yasuno M, Iwamoto S, Shono A, Satoh K, Nakajima M (2002) Microscopic observation of emulsion droplet formation from a polycarbonate membrane. Colloid Surf A 207:185–196

    Article  CAS  Google Scholar 

  • Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  Google Scholar 

  • Mueller-Fischer N, Bleuler H, Windhab EJ (2007) Dynamically enhanced membrane foaming. Chem Eng Sci 62:4409–4419

    Article  CAS  Google Scholar 

  • Nakashima T, Shimizu M, Kukizaki M (2000) Particle control of emulsion by membrane emulsification and its applications. Adv Drug Deliv Rev 45:47–56

    Article  CAS  Google Scholar 

  • Nappini S, Bonini M, Bombelli FB, Pineider F, Songregorio C, Baglioni P, Nordèn B (2011) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on megnetoliposomes stability. Soft Matter 7:1025–1037

    Article  CAS  Google Scholar 

  • Peng SJ, Williams RA (1998) Controlled production of emulsions using a crossflow membrane, Part I: droplet formation from a single pore. Trans Inst Chem Eng 76:894–901

    Article  CAS  Google Scholar 

  • Sawant RR, Torchilin VP (2010) Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 6:4026–4044

    Article  CAS  Google Scholar 

  • Schadler V, Windhab E (2006) Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 189:130–135

    Article  CAS  Google Scholar 

  • Schröder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous ceramic membranes. J Coll Interf Sci 202:334–340

    Article  Google Scholar 

  • Timgren A, Tragardh G, Tragardh C (2009) Effects of pore spacing on drop size during cross-flow membrane emulsification—a numerical study. Chem Eng Sci 64:1111–1118

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  Google Scholar 

  • Vladisavljevića G, Lambrichb U, Nakajimac M, Schubertb H (2004) Production of O/W emulsions using SPG membranes, ceramic α-aluminium oxide membranes, microfluidizer and a silicon microchannel plate—a comparative study. Colloids Surf A 232:199–207

    Article  Google Scholar 

  • Walde P (2004) Preparation of Vesicles (Liposomes). In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 9. American Scientific Publishers, California, pp 43–79

    Google Scholar 

  • Windhab E, Schadler V, Troxler B, Duerig AK, Grohmann F, Duerig A, Eisner V, Grohmann FR (2006) Production of finely dispersed micro or nano emulsions with narrow drop size distribution comprises pressing fluid phase through e.g. filter cloth cylinder, from which drops are stripped by its motion and pass into non-miscible fluid. Patent Number(s): WO2006021375-A1; DE102004040735-A1; DE102004040735-B4; EP1781402-A1; EP1781402-B1; DE502005003021-G; JP2008510607-W; US2011038901-A1; JP4852042-B2; US8267572-B2

    Google Scholar 

  • Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006) Preparation of highly monodisperse droplets in a t-junction microfluidic device. AIChE J 52:3005–3010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Rondeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rondeau, E., Holzapfel, S., Engel, H., Windhab, E.J. (2014). Vesicles and Composite Particles by Rotating Membrane Pore Extrusion. In: Nirschl, H., Keller, K. (eds) Upscaling of Bio-Nano-Processes. Lecture Notes in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43899-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43899-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43898-5

  • Online ISBN: 978-3-662-43899-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics