Magnetic Microgels: Synthesis and Characterization

  • Rodica Turcu
  • Izabell Craciunescu
  • Alexandrina Nan
Part of the Lecture Notes in Bioengineering book series (LNBE)


Magnetic microgels—obtained by encapsulation of magnetic nanoparticles into polymers acting as clustering agents—represent good candidates for biomedical applications and high gradient magnetic separation process because they fulfill important requirements, such as: superparamagnetic behavior, high saturation magnetization, and rich in surface functional groups. Biocompatible magnetic microgels were obtained using high colloidal stability magnetic nanofluids as primary materials in various synthesis procedures that allow encapsulation of clusters of magnetite nanoparticles into different polymers including polyacrylic acid, poly(N-isopropylacrylamide), poly(3-acrylamidopropyl trimethylammonium chloride). Our results show that polymer encapsulation of magnetite nanoparticles from magnetic nanofluid allows for the tailoring of the magnetic microgels’ properties by controlling the synthesis parameters.


Sodium Dodecyl Sulfate Magnetic Nanoparticles Magnetite Nanoparticles Polyacrylic Acid Superparamagnetic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657. doi: 10.1002/smll.200600590 CrossRefGoogle Scholar
  2. Bica D, Vékás L, Avdeev MV, Marinica O, Socoliuc V, Balasoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Mag Mag Mat 311:17–21. doi: 10.1016/j.jmmm.2006.11.158 CrossRefGoogle Scholar
  3. Chen T, Cao Z, Guo X, Nie J, Xu J, Fan Z, Du B (2011) Preparation and characterization of thermosensitive organic–inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polym Lond 52:172–179. doi: 10.1016/j.polymer.2010.11.014 CrossRefGoogle Scholar
  4. Ditsch A, Laibinis PE, Wang DIC, Hatton TA (2005) Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles. Langmuir 21:6006–6018. doi: 10.1021/la047057 CrossRefGoogle Scholar
  5. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(n-isopropylacrylamide) microgels. Langmuir 20:2123–2133. doi: 10.1021/la0351562 CrossRefGoogle Scholar
  6. Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, Su WC, Shieh DB (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131:66–68. doi: 10.1021/ja804947u CrossRefGoogle Scholar
  7. Jia J, Yu JC, Zhu XM, Chan KM, Wang YXJ (2012) Ultra-fast method to synthesize mesoporous magnetite nanoclusters as highly sensitive magnetic resonance probe. J Colloid Interface Sci 379:1–7. doi: 10.1016/j.jcis.2012.04.035 CrossRefGoogle Scholar
  8. Karg M, Hellweg T (2009a) Smart inorganic/organic hybrid microgels: synthesis and characterization. J Mater Chem 19:8714–8727. doi: 10.1039/B820292N CrossRefGoogle Scholar
  9. Karg M, Hellweg T (2009b) New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterization. Curr Opin Colloid Interface Sci 14:438–450. doi: 10.1016/j.cocis.2009.08.002 CrossRefGoogle Scholar
  10. Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36:231–279. doi: 10.1146/annurev.matsci.36.032905.091025 CrossRefGoogle Scholar
  11. Landfester K, Ramírez LP (2003) Encapsulated magnetite particles for biomedical application. J Phys Condens Matter 15:S1345–S1361. doi: 10.1088/0953-8984/15/15/304 CrossRefGoogle Scholar
  12. Leal MP, Torti A, Riedinger A, La Fleur R, Petti D, Bertacco RCR, Pellegrino T (2012) Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel. ACS Nano 6:10535–10545. doi: 10.1021/nn3028425 Google Scholar
  13. Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys Scr 1:286–298. doi: 10.1088/0031-8949/1/5-6/020 CrossRefGoogle Scholar
  14. Liu TY, Hu SH, Liu DM, Chen SY, Chen IW (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65. doi: 10.1016/j.nantod.2008.10.011 CrossRefGoogle Scholar
  15. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679. doi: 10.1021/la902635k CrossRefGoogle Scholar
  16. Mak SY, Chen DH (2005) Binding and sulfonation of poly(acrylic acid) on iron oxide nanoparticles: a novel, magnetic, strong acid cation nano-adsorbent. Macromol Rapid Commun 26:1567–1571. doi: 10.1002/marc.200500397 CrossRefGoogle Scholar
  17. McGorty R, Fung J, Kaz D, Manoharan VN (2010) Colloidal self-assembly at an interface. Mat Today 13:34–42. doi: 10.1016/S1369-7021(10)70107-3 CrossRefGoogle Scholar
  18. Menager C, Mangili J, Sandre O, Cabuil V (2004) Preparation and swelling of hydrophilic magnetic microgels. Polymer 45:2475–2481. doi: 10.1016/j.polymer.02.018 CrossRefGoogle Scholar
  19. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929. doi: 10.1021/bm0504330 CrossRefGoogle Scholar
  20. Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189. doi: 10.1016/j.progpolymsci.2010.08.005 CrossRefGoogle Scholar
  21. Oh KJ, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477. doi: 10.1016/j.progpolymsci.2008.01.002 CrossRefGoogle Scholar
  22. Paquet C, de Haan HW, Leek DM, Lin HY, Xiang B, Tian G, Kell A, Simard B (2011) Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: a particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano 5:3104–3112. doi: 10.1021/nn2002272 CrossRefGoogle Scholar
  23. Pich A, Bhattacharya S, Lu Y, Boyko V, Adler HJP (2004) Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 20:10706–10711. doi: 10.1021/la040084f CrossRefGoogle Scholar
  24. Qiu P, Jensen C, Charity N, Towner R, Mao C (2010) Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J Am Chem Soc 132:17724–17732. doi: 10.1021/ja102138a CrossRefGoogle Scholar
  25. Regmi R, Bhattarai SR, Sudakar C, Wani AS, Cunningham R, Vaishnava PP, Naik R, Oupicky D, Lawes G (2010) Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. J Mat Chem 20:6158–6163. doi: 10.1039/C0JM00844C CrossRefGoogle Scholar
  26. Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371. doi: 10.1039/B925218P CrossRefGoogle Scholar
  27. Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22:2516–2522. doi: 10.1021/la052636f CrossRefGoogle Scholar
  28. Socoliuc V, Vékás L, Turcu R (2013) Magnetically induced phase condensation in an aqueous dispersion of magnetic nanogels. Soft Matter 9:3098–3105. doi: 10.1039/C2SM27262H CrossRefGoogle Scholar
  29. Sondjaja R, Hatton AT, Tam MKC (2009) Clustering of magnetic nanoparticles using a double hydrophilic block copolymer, poly (ethylene oxide)-b-poly (acrylic acid). J Mag Mag Mat 321:2393–2397. doi: 10.1016/j.jmmm.2009.02.136 CrossRefGoogle Scholar
  30. Turcu R, Socoliuc V, Craciunescu I, Petran A, Marinica O, Daia C, Paulus A, Franzreb M, Vékás L (2014) Magnetic microgels, a promising candidate for enhanced magnetic adsorbent particles in bioseparation: synthesis, physico-chemical characterization and separation performance (in preparation)Google Scholar
  31. Turcu R, Nan A, Craciunescu I, Leostean C, Macavei S, Taculescu A, Marinica O, Daia C, Vékás L (2010) Synthesis and characterization of magnetically controllable nanostructures using different polymers. AIP Conf Proc 1311:20–27. doi:
  32. Wong JE, Gaharwar AK, Muller-Schulte D, Bahadur D, Richtering W (2008) Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: Magnetic and thermoresponsive. J Colloid Interface Sci 324:47–54. doi: 10.1016/j.jcis.2008.05.024 CrossRefGoogle Scholar
  33. Yu S, Wan J, Yu X, Chen K (2010) Preparation and characterization of hydrophobic magnetite microspheres by a simple solvothermal method. J Phys Chem Sol 71:412–415. doi: 10.1016/j.jpcs.2009.11.011 CrossRefGoogle Scholar
  34. Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–5916. doi: 10.1039/C0SM01307B CrossRefGoogle Scholar
  35. Zhou L, Zhinan C, Jinying Y, Kang Y, Yuan W, Shen D (2011) Multifunctional hybrid magnetite nanoparticles with pH-responsivity, superparamagnetism and fluorescence. Polym Int 60:1303–1308. doi: 10.1002/pi.3081 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rodica Turcu
    • 1
  • Izabell Craciunescu
    • 1
  • Alexandrina Nan
    • 1
  1. 1.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations