Skip to main content

A Restorable Semi-fragile Watermarking Combined DCT with Interpolation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Abstract

In this paper, a semi-fragile watermarking with interpolation method is proposed to improve recovery performance with less recovery watermark capacity. The original image is 2-fold down sampled to reduce the watermark payload and DCT (Discrete Cosine Transformation) is calculated on each 4 × 4 block in the down-sampled image. The DC coefficient and first two AC coefficients in each 4 × 4 block are quantized by selected quantized steps respectively and encoded with 11 bits to generate the recovery watermark corresponding to 8 × 8 block in the original image. The recovery watermark of each 8 × 8 block is embedded in the quantized DCT coefficients of other blocks. At the recovery side, the low resolution image is firstly reconstructed by the extracted valid recovery watermark and the high resolution one is reconstructed by the interpolation method based on the low resolution one. The tampered blocks are recovered by the corresponding blocks in the high resolution image. The image inpainting method is also used to recover the tampering coincident blocks. Experimental results show that the proposed restorable semi-fragile watermarking method can achieve better recovery performance under JPEG (Joint Photographic Experts Group) compression with superior invisibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Han, S., Chu, C.: Content-based image authentication current status, issues, and challenges. Int. J. Inf. Secur. 9, 19–32 (2010)

    Article  Google Scholar 

  2. Haouzia, A., Noumeir, R.: Methods for image authentication: a survey. Multimed. Tools Appl. 39, 1–46 (2008)

    Article  Google Scholar 

  3. Zhang, X.P., Wang, S.Z., Qian, Z.X., Feng, G.R.: Reference sharing mechanism for watermark self-embedding. IEEE Trans. Image Process. 20(2), 485–495 (2011)

    Article  MathSciNet  Google Scholar 

  4. Zhang, X.P., Qian, Z.X., Ren, Y.L., Feng, G.R.: Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Trans. Inf. Forensics Secur. 6(4), 1223–1232 (2011)

    Article  Google Scholar 

  5. He, H.J., Chen, F., Tai, H.M., Ton, K., Zhang, J.S.: Performance analysis of a block-neighborhood-based self-recovery fragile watermarking scheme. IEEE Trans. Inf. Forensics Secur. 7(1), 185–196 (2012)

    Article  Google Scholar 

  6. Lin, C.Y., Chang, S.F.: Semi-fragile watermarking for authenticating JPEG visual content. In: SPIE Security and Watermarking of Multimedia Contents II EI’00, pp. 140–151 (2000)

    Google Scholar 

  7. Li, G., Pei, S., Chen, G., Cao, W., Wu, B.: A self-embedded watermarking scheme based on relationship function of corresponding inter-blocks DCT coefficient. In: 13th International Conference on Computer Supported Cooperative Work in Design, pp. 107–112 (2009)

    Google Scholar 

  8. Wang, H., Ho, A.T., Zhao, X.: A novel fast self-restoration semi-fragile watermarking algorithm for image content authentication resistant to JPEG compression. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 72–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Rafiullah, C., Asifullah, K.: Digital image authentication and recovery: employing integer transform based information embedding and extraction. Inf. Sci. 180, 4909–4928 (2010)

    Article  Google Scholar 

  10. Fridrich, J., Goljan, M., Memon, N.: Cryptanalysis of the Yeung-Mintzer fragile watermarking technique. J. Electron. Imaging 11(4), 262–274 (2002)

    Google Scholar 

  11. He, H.-J., Zhang, J.-S., Tai, H.-M.: A wavelet-based fragile watermarking scheme for secure image authentication. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 422–432. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Huo, Y.R., He, H.J., Chen, F.: A semi-fragile watermarking algorithm with two-stage detection. Multimed. Tools Appl. Jan. 2013 (online first)

    Google Scholar 

  13. Huo, Y.R., He, H.J., Chen, F.: Alterable-capacity fragile watermarking scheme with restoration capability. Opt. Commun. 185, 1759–1766 (2012)

    Article  Google Scholar 

  14. Chen, F., He, H., Huo, Y., Wang, H.: Self-recovery fragile watermarking scheme with variable watermark payload. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 142–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Zhao, L., He, H.J., Yin, Z.K.: Text direction adaptive image interpolation based on curvelet transform. J. Optoelectron. Laser 23(4), 798–804 (2012)

    Google Scholar 

  16. Elad, M., Starck, J.L., Querre, P., Donoho, D.L.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19, 340–358 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (Grant No. 61373180, 61170226), the Fundamental Research Funds for the Central Universities (Grant No. SWJTU09CX039, SWJTU10CX09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huo, Y., He, H., Chen, F. (2014). A Restorable Semi-fragile Watermarking Combined DCT with Interpolation. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics