Skip to main content

Digital Forensics of Printed Source Identification for Chinese Characters

  • Conference paper
  • First Online:
Digital-Forensics and Watermarking (IWDW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Included in the following conference series:

  • 1597 Accesses

Abstract

Recently, digital forensics, which involves the collection and analysis of the origin digital device, has become an important issue. Digital content can play a crucial role in identifying the source device, such as serve as evidence in court. To achieve this goal, we use different texture feature extraction methods such as gray-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT), to analyze the Chinese printed source in order to find the impact of different output devices. Furthermore, we also explore the optimum feature subset by using feature selection techniques and using support vector machine (SVM) to identify the source model of the documents. The average experimental results attain a 98.64 % identification rate which is significantly superior to the existing known method by 1.27 %. The superior testing performance demonstrates that the proposed identification method is very useful for source laser printer identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Intellectual Property Organization. http://www.wipo.int

  2. Cox, I.J., Miller, M.L., Bloom, J.F., Fridrich, J., Kaler, T.: Digital Watermarking and Steganography. Elsevier, Burlington (2008)

    Google Scholar 

  3. Kundur, D., Lin, C.Y., Macq, B., Yu, H.: Special issue on enabling security technologies for digital rights management. Proc. IEEE 92(6), 879–882 (2004)

    Article  Google Scholar 

  4. Zhu, B., Wu, J., Kankanhalli, M.: Print signatures for document authentication. In: CCS’03, Washington, DC, USA, October 2003

    Google Scholar 

  5. Mikkilineni, A.K., Ali, G.N., Chiang, P.J., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Signature-embedding in printed documents for security and forensic applications. In: Proceedings of the SPIE International Conference on Security, Steganography, and Watermarking of Multimedia Contents, vol. 5306, pp. 455–466, January 2004

    Google Scholar 

  6. Mikkilineni, A.K., Chiang, P.J., Ali, G.N., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Printer identification based on graylevel co-occurrence features for security and forensic applications. In: Proceedings of the SPIE International Conference on Security, vol. 5681, pp. 430–440, March 2005

    Google Scholar 

  7. Talbot, V., Perrot, P., Murie, C.: Inkjet printing discrimination based on invariant moments. In: Proceedings of the IS&T’s NIP22: International Conference on Digital Printing Technologies, pp. 427–431, September 2006

    Google Scholar 

  8. Khanna, N., Mikkilineni, A.K., Martone, A.F., Ali, G.N., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: A survey of forensic characterization methods for physical devices. In: Proceedings of Digital Forensic Research Workshop, vol. 3, pp. S17–S28 (2006)

    Google Scholar 

  9. Bulan, O., Junwen, M., Sharma, G.: Geometric distortion signatures for printer identification. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1401–1404, April 2009

    Google Scholar 

  10. Choi, J.H., Im, D.H., Lee, Oh, J.T., Ryu, J.H. Lee, H.K.: Color laser printer identification by analyzing statistical features on discrete wavelet transform. In: Proceedings of IEEE International Conference on Image Processing (ICIP), pp. 1505–1508, Nov 2009

    Google Scholar 

  11. Tsai, M.J., Liu, J., Wang, C.S., Chuang, C.H.: Source color laser printer identification using discrete wavelet transform and feature selection algorithms. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2633–2636, May 2011

    Google Scholar 

  12. List of Languages by Number of Native Speakers.

    Google Scholar 

  13. Asian Languages and Culture: Chinese. http://apps.carleton.edu/curricular/asln/Chinese/

  14. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern SMC–3(6), 610–621 (1973)

    Article  Google Scholar 

  15. Mikkilineni, A.K., Chiang, P.J., Ali, G.N., Chiu, G.T.-C., Allebach, J.P., Delp, E.J.: Printer identification based on graylevel co-occurrence features for security and forensic applications. Proc. SPIE 5681, 430–440 (2005)

    Article  Google Scholar 

  16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  17. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  18. Tsai, M.J., Wang, C.S., Liu, J., Yin, J.S.: Using decision fusion of feature selection in digital forensics for camera source model identification. Comput. Stand. Interfaces 34, 292–304 (2012)

    Article  Google Scholar 

  19. Stearns, S.: On selecting features for pattern classifiers. In: 3rd International Conference on Pattern Recognition, Coronado, California, pp. 71–75 (1976)

    Google Scholar 

  20. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

  21. Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relation. Fuzzy Sets Syst. 97, 33–48 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1998)

    Article  MathSciNet  Google Scholar 

  23. Chinese Calligraphy. http://www.zein.se/patrick/chinen9p.html

  24. Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6, 1673–1687 (1997)

    Article  Google Scholar 

  25. Chinese Characters.

    Google Scholar 

  26. http://www.moneydj.com/kmdj/news/newsviewer.aspx

Download references

Acknowledgements

This work was supported by the National Science Council in Taiwan, Republic of China, under Grant NSC99-2410-H-009-053-MY2 and NSC101-2410-H-009-006-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jen Tsai .

Editor information

Editors and Affiliations

Appendix

Appendix

The revised/adjusted formulas in this study and in Mikkilineni [15]

 

The formulas in this study

The formulas in Mikkilineni [15]

Revised formula

\( GLDHenergy = \sum\limits_{k = 0}^{N} {GLDM\left( k \right)^{2} } \)

\( GLDHenergy = \sum\limits_{k = 0}^{N} {GLDM\left( k \right)} \)

\( GLSHenergy = \sum\limits_{k = 0}^{ 2N} {GLSH\left( k \right)^{ 2} } \)

\( GLSHenergy = \sum\limits_{k = 0}^{ 2N} {GLSH\left( k \right)} \)

\( \begin{array}{l} GLSHshade = \\ \qquad \sum\limits_{k = 0}^{2N} \frac{{(k - \mu_{x} - \mu_{y} )^{3} GLSH(k)}}{(\sigma_{x}^{2} + \sigma_{y}^{2} + 2\rho \sigma_{x} \sigma_{y})^{3/2}} \end{array} \)

\( \begin{array}{l} GLSHshade = \\ \qquad \sum\limits_{k = 0}^{2N} \frac{{(k - \mu_{x} - \mu_{y} )^{3} GLSH(k)}}{(\sigma_{x}^{2} - \sigma_{y}^{2} + 2\rho \sigma_{x} \sigma_{y} )^{3/2}} \\ \end{array} \)

\( \begin{array}{l} GLSHprom = \\ \qquad \sum\limits_{k = 0}^{2N} \frac{{(k - \mu_{x} - \mu_{y} )^{4} GLSH(k)}}{(\sigma_{x}^{2} + \sigma_{y}^{2} + 2\rho \sigma_{x} \sigma_{y} )^{4/2}} \end{array} \)

\( \begin{array}{l} GLSHprom = \hfill \\ \qquad \sum\limits_{k = 0}^{2N} \frac{{(k - \mu_{x} - \mu_{y} )^{4} GLSH(k)}}{(\sigma_{x}^{2} - \sigma_{y}^{2} + 2\rho \sigma_{x} \sigma_{y})^{4/2}} \end{array} \)

Adjusted formula

\( \mu_{x} = \sum\limits_{i = 0}^{N} {i \times p_{x} \left( i \right)} \)

\( \mu_{x} = \sum\limits_{i = 0}^{N} {p_{x} \left( i \right)} \)

\( \mu_{y} = \sum\limits_{j = 0}^{N} {j \times p_{y} \left( j \right)} \)

\( \mu_{y} = \sum\limits_{j = 0}^{N} {p_{y} \left( j \right)} \)

\( \sigma_{x}^{ 2} = \sum\limits_{i = 0}^{N} {\left( {i - \mu_{x} } \right)^{ 2} p_{x} \left( i \right)} \)

\( \sigma_{x}^{ 2} = \sum\limits_{i = 0}^{N} {i^{ 2} \times p_{x} \left( i \right) - \mu_{x}^{ 2} } \)

\( \sigma_{y}^{ 2} = \sum\limits_{j = 0}^{N} {\left( {j - \mu_{y} } \right)^{ 2} p_{y} \left( j \right)} \)

\( \sigma_{y}^{ 2} = \sum\limits_{j = 0}^{N} {j^{ 2} \times p_{y} \left( j \right) - \mu_{y}^{ 2} } \)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsai, MJ., Liu, J., Yin, JS., Yuadi, I. (2014). Digital Forensics of Printed Source Identification for Chinese Characters. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics