Skip to main content

On User Interaction Behavior as Evidence for Computer Forensic Analysis

  • Conference paper
  • First Online:
Digital-Forensics and Watermarking (IWDW 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8389))

Included in the following conference series:

  • 1703 Accesses

Abstract

Demographic information has a rich context from which to make decisions about how to filter or individualize computer users in forensic analysis. Although current explorations into technologies such as face and fingerprint analysis have seen varying rates of success, two main problems limit their applicability in the context of computer crimes: they can be intrusive, and they can require costly equipment. Our solution is to determine users’ demographic traits by analyzing the interactions between users and computers. We conducted a field study that gathered users’ keystroke and mouse data during interaction with a computer. From user interaction data, we extracted keystroke timing and mouse movement features, and developed weighted random forest classifiers for five demographic traits: gender, age, ethnicity, handedness, and language. Experiments showed that these demographics can be accurately inferred from user interaction behavior, with recognition rates expressed by the area under the ROC curve (AUC) ranging from 82.11 % to 87.32 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghaddam, B., Yang, M.-H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)

    Article  Google Scholar 

  2. Baluja, S., Rowley, H.A.: Boosting sex identification performance. Int. J. Comput. Vis. 71(1), 111–119 (2007)

    Article  Google Scholar 

  3. Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)

    Article  Google Scholar 

  4. Lapedriza, A., Marin-Jimenez, M.J., Vitria, J.: Gender recognition in non controlled environments. In: Proceedings of the International Conference on Robotics and Automation, pp. 834–837 (2006)

    Google Scholar 

  5. Wang, J., Lin, C., Chang, Y., Nagurka, M., Yen, C., Yeh, C.: Gender determination using fingertip features. Int. J. Med. Update 3(2), 22–28 (2008)

    Google Scholar 

  6. Badawi, A., Mahfouz, M., Tadross, R., Jantz, R.: Fingerprint-based gender classification. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition, June 2006

    Google Scholar 

  7. Wu, K., Childers, D.G.: Gender recognition from speech. Part I: coarse analysis. J. Acoust. Soc. Am. 90(4), 1828–1840 (1991)

    Article  Google Scholar 

  8. Bocklet, T., Maier, A., Bauer, J.G., Burkhardt, F., Noth, E.: Age and gender recognition for telephone applications based on gmm supervectors and support vector machines. In: Proceedings of the IEEE ICASSP, pp. 1605–1608 (2008)

    Google Scholar 

  9. Li, X., Maybank, S.J., Yan, S., Tao, D., Xu, D.: Gait Components and their application to gender recognition. IEEE Trans. Syst., Man Cybern. C, Appl. Rev. 38(2), 145–155 (2008)

    Article  MATH  Google Scholar 

  10. Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Process. 18(8), 1905–1910 (2009)

    Article  MathSciNet  Google Scholar 

  11. Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Trans. Inf. Forensics Secur. 5(4), 761–770 (2010)

    Article  MathSciNet  Google Scholar 

  12. Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Generations Comput. Syst. 16(4), 351–359 (2000)

    Article  Google Scholar 

  13. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics. ACM Trans. Inf. Syst. Secur. 5(4), 367–397 (2002)

    Article  Google Scholar 

  14. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics. IEEE Trans. Depend. Secure Comput. 4(3), 165–179 (2007)

    Article  Google Scholar 

  15. Shen, C., Cai, Z., Guan, X., Du, Y., Maxion, R.: User authentication through mouse dynamics. IEEE Trans. Inf. Forensics Secur. 8(1), 16–30 (2013)

    Article  Google Scholar 

  16. Admit One Security, AdmitOneSecurity, http://www.biopassword.com

  17. Behavio Sec, BehavioSec, http://www.behaviosec.com

  18. Killourhy, K.S., Maxion, R.A.: Comparing anomaly detectors for keystroke dynamics. In: Proceedings of the 39th Annual International Conference on Dependable Systems and Networks, pp. 125–134 (2009)

    Google Scholar 

  19. Shen, C., Cai, Z.M., Maxion, R.A., Xiang, G., Guan, X.H.: Comparing classification algorithms for mouse dynamics based user identification. In: Proceedings of the 5th International Conference on Biometrics: Theory, Applications and Systems, pp. 61–66 (2012)

    Google Scholar 

  20. Jain, A.K., Dass, S.C., Nandakumar, K.: Can soft biometric traits assist user recognition? In: Proceedings of the SPIE. Biometric Technol. Human Identification, vol. 5404, pp. 561–572, (2004)

    Google Scholar 

  21. Giot, R., Rosenberger, C.: A new soft biometric approach for keystroke dynamics based on gender recognition. J. Inf. Tech. Manage. 11(1/2), 35–49 (2012)

    Google Scholar 

  22. Allen, W.H.: Computer forensics. IEEE Secur. Priv. 3(4), 59–62 (2005)

    Article  Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  24. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

    Article  Google Scholar 

  25. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

Download references

Acknowledgement

The research is supported by NFSC (61175039, 61221063), 863 High Tech Development Plan (2007AA01Z464, 2012AA011003), Research Fund for Doctoral Program of Higher Education of China (20090201120032), International Research Collaboration Project of Shaanxi Province (2013KW11), and Fundamental Research Funds for Central Universities (2012jdhz08). Roy Maxion was supported by the National Science Foundation, grant number CNS-0716677.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, C., Cai, Z., Maxion, R.A., Guan, X. (2014). On User Interaction Behavior as Evidence for Computer Forensic Analysis. In: Shi, Y., Kim, HJ., Pérez-González, F. (eds) Digital-Forensics and Watermarking. IWDW 2013. Lecture Notes in Computer Science(), vol 8389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43886-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43886-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43885-5

  • Online ISBN: 978-3-662-43886-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics