Skip to main content

Infectious Microecology and Immunology

  • Chapter
Infectious Microecology

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 706 Accesses

Abstract

Infectious microecology is a branch of microecology that uses microecological theory and methods to investigate the appearance, development and outcome of infection. The main purpose of this chapter is to investigate the pathogenesis of infection and its clinical manifestations, preventions and therapies. Under normal conditions, the gut microflora exists in a state of equilibrium with the host that has been described as a separate “organ” adapted to human physiology. From the moment of birth, the neonatal intestine is confronted with potent immunostimulatory substances while the body surfaces are protected from environmental and microbial exposure during fetal life [1]. Microbial antigenic challenge is required for maturation of several physiological and anatomical functions of the intestinal epithelial barrier (IEB) [2]. Commensal bacteria regulate intestinal innate and adaptive immunity and provide stimuli for ongoing repair and restitution of IEB [3]. Colonization by pathogenic bacteria and (or) dysmature response to microbial antigen may result in flagrant inflammatory response [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stockinger S, Hornef M W, Chassin C. Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci, 2011, 68: 3699–3712.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma R, Tepas J J, 3rd. Microecology, intestinal epithelial barrier and necrotizing enterocolitis. Pediatr Surg Int, 2010, 26: 11–21.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Schneeman T A, Bruno M E, Schjerven H, et al. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: Linking innate and adaptive immune responses. J Immunol, 2005, 175: 376–384.

    Article  CAS  PubMed  Google Scholar 

  4. Hooper L V, Stappenbeck T S, Hong C V, et al. Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nat Immunol, 2003, 4: 269–273.

    Article  CAS  PubMed  Google Scholar 

  5. Dhananjaya B L, D’Souza C J. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines — a multitoxin. Basic Clin Pharmacol Toxicol, 2011, 108: 79–83.

    Article  CAS  PubMed  Google Scholar 

  6. Kelly CP, Kyne L. The host immune response to Clostridium difficile. J Med Microbiol, 2011, 60: 1070–1079.

    Article  CAS  PubMed  Google Scholar 

  7. Walsh K B, Teijaro J R, Rosen H, et al. Quelling the storm: Utilization of sphingosine-1-phosphate receptor signaling to ameliorate influenza virus-induced cytokine storm. Immunol Res, 2011, 51: 15–25.

    Article  CAS  PubMed  Google Scholar 

  8. Kanno T, Sakaguchi K, Fukuyama M, et al. Properties of metabolic substances produced by group A streptococcus from a food-borne epidemic. J Infect Chemother, 2011,17: 462–467.

    Article  CAS  PubMed  Google Scholar 

  9. Shen A. Clostridium difficile toxins: Mediators of inflammation. J Innate Immun, 2012, 4: 149–158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Takahashi K. Mannose-binding lectin and the balance between immune protection and complication. Expert Rev Anti Infect Ther, 2011, 9: 1179–1190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Takahashi M, Ishida Y, Iwaki D, et al. Essential role of mannose-binding lectin-associated serine protease-1 in activation of the complement factor D. J Exp Med, 2010, 207: 29–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Drummond R, Cauvi D M, Hawisher D, et al. Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages. Innate Immun, 2013, 19: 30–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ohashi R, Takaya J, Tsuji S, et al. Prognostic usefulness of lymphocyte V beta receptor determination in toxic shock syndrome. Eur J Pediatr, 2005, 164: 703–704.

    Article  PubMed  Google Scholar 

  14. Schultze J L, Michalak S, Lowne J, et al. Human non-germinal center B cell interleukin (IL)-12 production is primarily regulated by T cell signals CD40 ligand, interferon gamma, and IL-10: Role of B cells in the maintenance of T cell responses. J Exp Med, 1999, 189: 1–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hashimoto K, Maeda Y, Kimura H, et al. Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect Immun, 2002, 70: 5167–5176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Loures F V, Pina A, Felonato M, et al. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol, 2009, 183: 1279–1290.

    Article  CAS  PubMed  Google Scholar 

  17. Vonk A G, Netea M G, Kullberg B J. Phagocytosis and intracellular killing of Candida albicans by murine polymorphonuclear neutrophils. Methods Mol Biol, 2012, 845: 277–287.

    Article  CAS  PubMed  Google Scholar 

  18. Kaya E G, Ozbilge H, Ustundag M B, et al. The effects on immune response of levamisole treatment following infection of U-937 macrophages with Candida albicans. Acta Microbiol Immunol Hung, 2011, 58: 279–288.

    Article  CAS  PubMed  Google Scholar 

  19. Antachopoulos C, Walsh T J. Immunotherapy of Cryptococcus infections. Clin Microbiol Infect, 2012, 18: 126–133.

    Article  CAS  PubMed  Google Scholar 

  20. McClelland E E, Nicola A M, Prados-Rosales R, et al. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest, 2010, 120: 1355–1361.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora. Science, 2005, 308: 1635–1638.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Snoek S A, Verstege M I, Boeckxstaens GE, et al. The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease. Expert Rev Gastroenterol Hepatol, 2010, 4: 637–651.

    Article  PubMed  Google Scholar 

  23. Backhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine. Science, 2005, 307: 1915–1920.

    Article  PubMed  CAS  Google Scholar 

  24. Kadooka Y, Sato M, Imaizumi K, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr, 2010, 64: 636–643.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Zhao Y, Zhang M, et al. Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats. PLoS One, 2012, 7: e42529.

    Google Scholar 

  26. Gauffin Cano P, Santacruz A, Moya A, et al. Bacteroides uniformis CECT 7771 Ameliorates Metabolic and Immunological Dysfunction in Mice with High-Fat-Diet Induced Obesity. PLoS One, 2012, 7: e41079.

    Google Scholar 

  27. Shifrin D A, Jr, McConnell R E, Nambiar R, et al. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol, 2012, 22: 627–631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Vendrig J C, Fink-Gremmels J. Intestinal barrier function in neonatal foals: Options for improvement. Vet J, 2012, 193: 32–37.

    CAS  PubMed  Google Scholar 

  29. Izadpanah A, Dwinell M B, Eckmann L, et al. Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: Mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol, 2001, 280: G710-G719.

    Google Scholar 

  30. Adkins B, Contractor N. Immune responses of female BALB/c and C57BL/6 neonatal mice to vaccination or intestinal infection are unaltered by exposure to breast milk lycopene. J Nutr, 2011, 141: 1326–1330.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lathrop S K, Bloom S M, Rao S M, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature, 2011, 478: 250–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Prakash S, Rodes L, Coussa-Charley M, et al. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics, 2011, 5: 71–86.

    PubMed Central  PubMed  Google Scholar 

  33. Sekirov I, Russell S L, Antunes L C, et al. Gut microbiota in health and disease. Physiol Rev, 2010, 90: 859–904.

    Article  CAS  PubMed  Google Scholar 

  34. Iliev I D, Funari V A, Taylor K D, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science, 2012, 336: 1314–1317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hill D A, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol, 2010, 28: 623–667.

    Article  CAS  PubMed  Google Scholar 

  36. Menard S, Candalh C, Bambou J C, et al. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut, 2004, 53: 821–828.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lakhan S E, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond), 2010, 7: 79.

    Article  Google Scholar 

  38. Winkler P, Ghadimi D, Schrezenmeir J, et al. Molecular and cellular basis of microflora-host interactions. J Nutr, 2007, 137: 756S-772S.

    Google Scholar 

  39. Speca S, Giusti I, Rieder F, et al. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol, 2012, 18: 3635–3661.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Das P, Singh A K, Pal T, et al. Colonization of the gut with Gram-negative bacilli, its association with neonatal sepsis and its clinical relevance in a developing country. J Med Microbiol, 2011, 60: 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  41. Ichinohe T, Pang I K, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A, 2011, 108: 5354–5359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut, 2011, 60: 49–54.

    Article  PubMed  Google Scholar 

  43. Guarner F, Malagelada J R. Gut flora in health and disease. Lancet, 2003, 361: 512–519.

    Article  PubMed  Google Scholar 

  44. Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography. Nature, 2012, 486: 222–227.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Lutgendorff F, Akkermans L M, Soderholm J D. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med, 2008, 8: 282–298.

    Article  CAS  PubMed  Google Scholar 

  46. Rousseau C, Poilane I, De Pontual L, et al. Clostridium difficile Carriage in Healthy Infants in the Community: A Potential Pathogenic Strain Reservoir. Clin Infect Dis, 2012.

    Google Scholar 

  47. Moore W E, Moore L H. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol, 1995, 61: 3202–3207.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kobayashi M, Nakamura K, Cornforth M, et al. Role of M2b Macrophages in the Acceleration of Bacterial Translocation and Subsequent Sepsis in Mice Exposed to Whole Body [137Cs] Gamma-Irradiation. J Immunol, 2012, 189: 296–303.

    Article  CAS  PubMed  Google Scholar 

  49. Urbaniak C, Burton J P, Reid G Breast, milk and microbes: A complex relationship that does not end with lactation. Womens Health (Lond Engl), 2012, 8: 385–398.

    Article  CAS  Google Scholar 

  50. Volf J, Stepanova H, Matiasovic J, et al. Salmonella enterica serovar Typhimurium and Enteritidis infection of pigs and cytokine signalling in palatine tonsils. Vet Microbiol, 2012, 156: 127–135.

    Article  CAS  PubMed  Google Scholar 

  51. Mason K L, Erb Downward J R, Mason K D, et al. Candida albicans and bacterial microbiota interactions in the cecum during re-colonization following broad spectrum antibiotic therapy. Infect Immun, 2012.

    Google Scholar 

  52. Barnett A M, Roy N C, McNabb W C, et al. The interactions between endogenous bacteria, dietary components and the mucus layer of the large bowel. Food Funct, 2012, 3: 690–699.

    Article  CAS  PubMed  Google Scholar 

  53. Thiennimitr P, Winter S E, Winter M G, et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A, 2011, 108: 17480–17485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hooper L V, Xu J, Falk P G, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A, 1999, 96: 9833–9838.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Acheson D W, Luccioli S. Microbial-gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol, 2004, 18: 387–404.

    Article  CAS  PubMed  Google Scholar 

  56. Hassan M, Kjos M, Nes I F, et al. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol, 2012.

    Google Scholar 

  57. Neu J, Lorca G, Kingma S D, et al. The intestinal microbiome: relationship to type 1 diabetes. Endocrinol Metab Clin North Am, 2010, 39: 563–571.

    Article  CAS  PubMed  Google Scholar 

  58. Vaarala O, Atkinson M A, Neu J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 2008, 57: 2555–2562.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Wallace T C, Guarner F, Madsen K, et al. Human gut microbiota and its relationship to health and disease. Nutr Rev, 2011, 69: 392–403.

    Article  PubMed  Google Scholar 

  60. Gaboriau-Routhiau V, Lecuyer E, Cerf-Bensussan N. Role of microbiota in postnatal maturation of intestinal T-cell responses. Curr Opin Gastroenterol, 2011, 27: 502–508.

    Article  CAS  PubMed  Google Scholar 

  61. Schwiertz A, Jacobi M, Frick J S, et al. Microbiota in pediatric inflammatory bowel disease. J Pediatr, 2010, 157: 240–244, e241.

    Google Scholar 

  62. Salminen S, Isolauri E, Onnela T. Gut flora in normal and disordered states. Chemotherapy, 1995, 41 (Suppl 1): 5–15.

    Article  PubMed  Google Scholar 

  63. Compare D, Coccoli P, Rocco A, et al. Gut-liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis, 2012, 22: 471–476.

    Article  CAS  PubMed  Google Scholar 

  64. Pearson C, Uhlig H H, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol, 2012, 33: 289–296.

    Article  CAS  PubMed  Google Scholar 

  65. Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients, 2011, 3: 637–682.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Invest, 2010, 39: 303–355.

    Article  CAS  PubMed  Google Scholar 

  67. Moreau M C, Gaboriau-Routhiau V. The absence of gut flora, the doses of antigen ingested and aging affect the long-term peripheral tolerance induced by ovalbumin feeding in mice. Res Immunol, 1996, 147: 49–59.

    Article  CAS  PubMed  Google Scholar 

  68. Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol, 1997, 159: 1739–1745.

    CAS  PubMed  Google Scholar 

  69. Fagundes C T, Souza D G, Nicoli J R, et al. Control of host inflammatory responsiveness by indigenous microbiota reveals an adaptive component of the innate immune system. Microbes Infect, 2011, 13: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  70. Campeau J L, Salim S Y, Albert E J, et al. Intestinal epithelial cells modulate antigen-presenting cell responses to bacterial DNA. Infect Immun, 2012, 80: 2632–2644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Cieza R J, Cao A T, Cong Y, et al. Immunomodulation for gastrointestinal infections. Expert Rev Anti Infect Ther, 2012, 10: 391–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kim J, Hegde M, Jayaraman A. Microfluidic co-culture of epithelial cells and bacteria for investigating soluble signal-mediated interactions. J Vis Exp, 2010.

    Google Scholar 

  73. Matricon J. Immunopathogenesis of inflammatory bowel disease. Med Sci (Paris), 2010, 26: 405–410.

    Article  Google Scholar 

  74. Xavier RJ, Podolsky D K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448: 427–434.

    Article  CAS  PubMed  Google Scholar 

  75. Tennyson C A, Friedman G Microecology, obesity, and probiotics. Curr Opin Endocrinol Diabetes Obes, 2008, 15: 422–427.

    Article  PubMed  Google Scholar 

  76. Mizrahi M, Ilan Y. The gut mucosa as a site for induction of regulatory T-cells. Curr Pharm Des, 2009, 15: 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  77. Carol M, Borruel N, Antolin M, et al. Modulation of apoptosis in intestinal lymphocytes by a probiotic bacteria in Crohn’s disease. J Leukoc Biol, 2006, 79: 917–922.

    Article  CAS  PubMed  Google Scholar 

  78. Sekine Y, Yamamoto C, Kakisaka M, et al. Signal-transducing adaptor protein-2 modulates Fas-mediated T cell apoptosis by interacting with caspase-8. J Immunol, 2012, 188: 6194–6204.

    Article  CAS  PubMed  Google Scholar 

  79. Soni C, Karande A A. Glycodelin-A interferes with IL-2/IL-2R signalling to induce cell growth arrest, loss of effector functions and apoptosis in T-lymphocytes. Hum Reprod, 2012, 27: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  80. Jerez A, Clemente M J, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T cell large granular lymphocyte leukemia. Blood, 2012.

    Google Scholar 

  81. Mitomi H, Ohkura Y, Yokoyama K, et al. Contribution of TIA-1+ and granzyme B+ cytotoxic T lymphocytes to cryptal apoptosis and ulceration in active inflammatory bowel disease. Pathol Res Pract, 2007, 203: 717–723.

    Article  PubMed  Google Scholar 

  82. Santaolalla R, Mane J, Pedrosa E, et al. Apoptosis resistance of mucosal lymphocytes and IL-10 deficiency in patients with steroid-refractory Crohn’s disease. Inflamm Bowel Dis, 2011, 17: 1490–1500.

    Article  PubMed  Google Scholar 

  83. de la Fuente H, Cibrian D, Sanchez-Madrid F. Immunoregulatory molecules are master regulators of inflammation during the immune response. FEBS Left, 2012, 586: 2897–2905.

    Article  CAS  Google Scholar 

  84. Veenbergen S, Samsom J N. Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Curr Opin Immunol, 2012, 24: 269–276.

    Article  CAS  PubMed  Google Scholar 

  85. Hormannsperger G, Clavel T, Haller D. Gut matters: Microbe-host interactions in allergic diseases. J Allergy Clin Immunol, 2012, 129: 1452–1459.

    Article  PubMed  CAS  Google Scholar 

  86. Ogino H, Nakamura K, Ihara E, et al. CD4+ CD25+ regulatory T cells suppress Th17-responses in an experimental colitis model. Dig Dis Sci, 2011, 56: 376–386.

    Article  CAS  PubMed  Google Scholar 

  87. Ruiter B, Shreffler W G The role of dendritic cells in food allergy. J Allergy Clin Immunol, 2012, 129: 921–928.

    Article  CAS  PubMed  Google Scholar 

  88. Guarner F. Prebiotics, probiotics and helminths: the “natural” solution? Dig Dis, 2009, 27: 412–417.

    Article  PubMed  Google Scholar 

  89. Gao B, Jeong W I, Tian Z. Liver: An organ with predominant innate immunity. Hepatology, 2008, 47: 729–736.

    Article  CAS  PubMed  Google Scholar 

  90. Crispe I N. The liver as a lymphoid organ. Annu Rev Immunol, 2009, 27: 147–163.

    Article  CAS  PubMed  Google Scholar 

  91. Lau A H, de Creus A, Lu L, et al. Liver tolerance mediated by antigen presenting cells: Fact or fiction? Gut, 2003, 52: 1075–1078.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Mowat A M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol, 2003, 3: 331–341.

    Article  CAS  PubMed  Google Scholar 

  93. Parker G A, Picut C A. Liver immunobiology. Toxicol Pathol, 2005, 33: 52–62.

    Article  CAS  PubMed  Google Scholar 

  94. Bilate A M, Lafaille J J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol, 2012, 30: 733–758.

    Article  CAS  PubMed  Google Scholar 

  95. Parker G A, Picut C A. Liver immunobiology. Toxicol Pathol, 2005, 33: 52–62.

    Article  CAS  PubMed  Google Scholar 

  96. Crispe I N, Giannandrea M, Klein I, et al. Cellular and molecular mechanisms of liver tolerance. Immunol Rev, 2006, 213: 101–118.

    Article  PubMed  Google Scholar 

  97. LeCluyse E L, Witek R P, Andersen M E, et al. Organotypic liver culture models: Meeting current challenges in toxicity testing. Crit Rev Toxicol, 2012, 42: 501–548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Hallam S, Escorcio-Correia M, Soper R, et al. Activated macrophages in the tumour microenvironment-dancing to the tune of TLR and NF-κB. J Pathol, 2009 219: 143–152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Parker G A, Picut C A. Immune functioning in non lymphoid organs: The liver. Toxicol Pathol, 2012, 40: 237–247.

    Article  CAS  PubMed  Google Scholar 

  100. Kremer M, Thomas E, Milton R J, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology, 2010, 51: 130–141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Smith K G, Clatworthy M R. FcgammaRIIB in autoimmunity and infection: Evolutionary and therapeutic implications. Nat Rev Immunol, 2010, 10: 328–343.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Younes A S, Csire M, Kapusinszky B, et al. Heterogeneous pathways of maternal-fetal transmission of human viruses (review). Pathol Oncol Res, 2009, 15: 451–465.

    Article  PubMed  Google Scholar 

  103. Desjarlais J R, Lazar G A, Zhukovsky E A, et al. Optimizing engagement of the immune system by anti-tumor antibodies: An engineer’s perspective. Drug Discov Today, 2007, 12: 898–910.

    Article  CAS  PubMed  Google Scholar 

  104. Champsaur M, Lanier L L. Effect of NKG2D ligand expression on host immune responses. Immunol Rev, 2010, 235: 267–285.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Cullen S P, Brunet M, Martin S J. Granzymes in cancer and immunity. Cell Death Differ, 2010, 17: 616–623.

    Article  CAS  PubMed  Google Scholar 

  106. Iannello A, Samarani S, Debbeche O, et al. Potential role of interleukin-18 in the immunopathogenesis of AIDS: Involvement in fratricidal killing of NK cells. J Virol, 2009, 83: 5999–6010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Iannello A, Samarani S, Debbeche O, et al. Role of interleukin-18 in the development and pathogenesis of AIDS. AIDS Rev, 2009, 11: 115–125.

    PubMed  Google Scholar 

  108. Godfrey D I, Uldrich A P, Baxter A G. NKT cells-an early warning system for HBV infection. Nat Med, 2012, 18: 1014–1016.

    Article  CAS  PubMed  Google Scholar 

  109. Stritesky G L, Jameson S C, Hogquist K A. Selection of self-reactive T cells in the thymus. Annu Rev Immunol, 2012, 30: 95–114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Diao H, Kon S, Iwabuchi K, et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity, 2004, 21: 539–550.

    Article  CAS  PubMed  Google Scholar 

  111. Diao H, Iwabuchi K, Li L, et al. Osteopontin regulates development and function of invariant natural killer T cells. Proc Natl Acad Sci USA, 2008, 105: 15884–15889.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. O’Farrelly C. Immunoregulation in the liver and its extrahepatic relevance. J Pediatr Gastroenterol Nutr, 2004, 39 Suppl 3: S727-S728.

    Google Scholar 

  113. Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol, 2008, 9: 960–969.

    Article  CAS  PubMed  Google Scholar 

  114. Hickey M J, Kubes P. Intravascular immunity: The host-pathogen encounter in blood vessels. Nat Rev Immunol, 2009, 9: 364–375.

    Article  CAS  PubMed  Google Scholar 

  115. McCuskey R S. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken), 2008, 291: 661–671.

    Article  Google Scholar 

  116. Deane J A, Hickey M J. Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: Insights from intravital imaging. Expert Rev Mol Med, 2009, 11: e25.

    Article  Google Scholar 

  117. John B, Crispe I N. Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol, 2004, 172: 5222–5229.

    Article  CAS  PubMed  Google Scholar 

  118. Cope A P. T cells in rheumatoid arthritis. Arthritis Res Ther, 2008, 10 (Suppl 1): S1.

    Article  CAS  Google Scholar 

  119. Kuniyasu Y, Marfani S M, Inayat I B, et al. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD8+ T cells by mouse liver. Hepatology, 2004, 39: 1017–1027.

    Article  PubMed  Google Scholar 

  120. McPherson A J, Snell L M, Mak T W, et al. Opposing roles for TRAF1 in the alternative versus classical NF-κB pathway in T cells. J Biol Chem, 2012, 287: 23010–23019.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Stoneman V E, Bennett M R. Role of Fas/Fas-L in vascular cell apoptosis. J Cardiovasc Pharmacol, 2009, 53: 100–108.

    Article  CAS  PubMed  Google Scholar 

  122. Sallusto F, Lanzavecchia A, Araki K, et al. From vaccines to memory and back. Immunity, 2010, 33: 451–463.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Castell J V, Castell M. Allergic hepatitis induced by drugs. Curr Opin Allergy Clin Immunol, 2006, 6: 258–265.

    CAS  PubMed  Google Scholar 

  124. Crispe I N. Liver antigen-presenting cells. J Hepatol, 2011, 54: 357–365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Sallusto F, Impellizzieri D, Basso C, et al. T-cell trafficking in the central nervous system. Immunol Rev, 2012, 248: 216–227.

    Article  PubMed  Google Scholar 

  126. Abo T, Tomiyama C, Watanabe H. Biology of autoreactive extrathymic T cells and B-1 cells of the innate immune system. Immunol Res, 2012, 52: 224–230.

    Article  CAS  PubMed  Google Scholar 

  127. Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol, 2009, 27: 485–517.

    Article  CAS  PubMed  Google Scholar 

  128. Roy D, Cai Q, Felty Q, et al. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J Toxicol Environ Health B Crit Rev, 2007, 10: 235–257.

    Article  CAS  PubMed  Google Scholar 

  129. Oo Y H, Adams D H. The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun, 2010, 34: 45–54.

    Article  CAS  PubMed  Google Scholar 

  130. Rittler P, Demmelmair H, Koletzko B, et al. Effect of elective abdominal surgery on human colon protein synthesis in situ. Ann Surg, 2001, 233: 39–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev, 2009, 231: 225–240.

    Article  CAS  PubMed  Google Scholar 

  132. Morelli A E, Thomson A W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol, 2007, 7: 610–621.

    Article  CAS  PubMed  Google Scholar 

  133. Klein L, Munz C, Lunemann J D. Autophagy-mediated antigen processing in CD4+ T cell tolerance and immunity. FEBS Lett, 2010, 584: 1405–1410.

    Article  CAS  PubMed  Google Scholar 

  134. Milush J M, Long B R, Snyder-Cappione J E, et al. Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood, 2009, 114: 4823–4831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med, 2000, 6: 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  136. Tang L, Yang J, Liu W, et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology, 2009, 137: 1498–1508, e1491–1495.

    Article  CAS  PubMed  Google Scholar 

  137. Mehal W Z. The gut-liver axis: a busy two-way street. Hepatology, 2012, 55: 1647–1649.

    Article  PubMed  Google Scholar 

  138. Holz L E, Warren A, Le Couteur D G, et al. CD8+ T cell tolerance following antigen recognition on hepatocytes. J Autoimmun, 2010, 34: 15–22.

    Article  CAS  PubMed  Google Scholar 

  139. Ricklin D, Hajishengallis G, Yang K, et al. Complement: A key system for immune surveillance and homeostasis. Nat Immunol, 2010, 11: 785–797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Sakuishi K, Miyake S, Yamamura T. Role of NK cells and invariant NKT cells in multiple sclerosis. Results Probl Cell Differ, 2010, 51: 127–147.

    Article  CAS  PubMed  Google Scholar 

  141. Levings M K, Sangregorio R, Sartirana C, et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med, 2002, 196: 1335–1346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diao, H., Cui, G., Chen, J., Wei, Y. (2014). Infectious Microecology and Immunology. In: Li, L. (eds) Infectious Microecology. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43883-1_3

Download citation

Publish with us

Policies and ethics