Skip to main content

Incremental Light Bundle Adjustment: Probabilistic Analysis and Application to Robotic Navigation

  • Chapter
New Development in Robot Vision

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 23))

Abstract

This paper focuses on incremental light bundle adjustment (iLBA), a recently introduced [13] structureless bundle adjustment method, that reduces computational complexity by algebraic elimination of camera-observed 3D points and using incremental smoothing to efficiently optimize only the camera poses.We consider the probability distribution that corresponds to the iLBA cost function, and analyze how well it represents the true density of the camera poses given the image measurements. The latter can be exactly calculated in bundle adjustment (BA) by marginalizing out the 3D points from the joint distribution of camera poses and 3D points. We present a theoretical analysis of the differences in the way that light bundle adjustment and bundle adjustment use measurement information. Using indoor and outdoor datasets we show that the first two moments of the iLBA and the true probability distributions are very similar in practice. Moreover, we present an extension of iLBA to robotic navigation, considering information fusion between high-rate IMU and a monocular camera sensor while avoiding explicit estimation of 3D points.We evaluate the performance of this method in a realistic synthetic aerial scenario and show that iLBA and incremental BA result in comparable navigation state estimation accuracy, while computational time is significantly reduced in the former case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avidan, S., Shashua, A.: Threading fundamental matrices. IEEE Trans. Pattern Anal. Machine Intell. 23(1), 73–77 (2001)

    Article  Google Scholar 

  2. Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3001–3008 (2011)

    Google Scholar 

  3. Dellaert, F., Kaess, M.: Square Root SAM: Simultaneous localization and mapping via square root information smoothing. Intl. J. of Robotics Research 25(12), 1181–1203 (2006)

    Article  MATH  Google Scholar 

  4. Eustice, R., Singh, H., Leonard, J.: Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans. Robotics 22(6), 1100–1114 (2006)

    Article  Google Scholar 

  5. Farrell, J.: Aided Navigation: GPS with High Rate Sensors. McGraw-Hill (2008)

    Google Scholar 

  6. Strasdat, H., Montiel, J.M.M., Davison, A.J.: Scale drift-aware large scale monocular SLAM. In: Robotics: Science and Systems (RSS), Zaragoza, Spain (2010)

    Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2000)

    Google Scholar 

  8. Ila, V., Porta, J.M., Andrade-Cetto, J.: Information-based compact Pose SLAM. IEEE Trans. Robotics 26(1) (2010), http://dx.doi.org/10.1109/TRO.2009.2034435 (in press)

  9. Indelman, V.: Navigation performance enhancement using online mosaicking. Ph.D. thesis, Technion - Israel Institute of Technology (2011)

    Google Scholar 

  10. Indelman, V.: Bundle adjustment without iterative structure estimation and its application to navigation. In: IEEE/ION Position Location and Navigation System (PLANS) Conference (2012)

    Google Scholar 

  11. Indelman, V., Gurfil, P., Rivlin, E., Rotstein, H.: Real-time vision-aided localization and navigation based on three-view geometry. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2239–2259 (2012)

    Article  Google Scholar 

  12. Indelman, V., Melim, A., Dellaert, F.: Incremental light bundle adjustment for robotics navigation. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, IROS (2013)

    Google Scholar 

  13. Indelman, V., Roberts, R., Beall, C., Dellaert, F.: Incremental light bundle adjustment. In: British Machine Vision Conf., BMVC (2012)

    Google Scholar 

  14. Indelman, V., Roberts, R., Dellaert, F.: Probabilistic analysis of incremental light bundle adjustment. In: IEEE Workshop on Robot Vision, WoRV (2013)

    Google Scholar 

  15. Indelman, V., Wiliams, S., Kaess, M., Dellaert, F.: Factor graph based incremental smoothing in inertial navigation systems. In: Intl. Conf. on Information Fusion, FUSION (2012)

    Google Scholar 

  16. Indelman, V., Wiliams, S., Kaess, M., Dellaert, F.: Information fusion in navigation systems via factor graph based incremental smoothing. Robotics and Autonomous Systems 61(8), 721–738 (2013)

    Article  Google Scholar 

  17. Kaess, M., Ila, V., Roberts, R., Dellaert, F.: The Bayes tree: An algorithmic foundation for probabilistic robot mapping. In: Hsu, D., Isler, V., Latombe, J.-C., Lin, M.C. (eds.) Algorithmic Foundations of Robotics IX. STAR, vol. 68, pp. 157–173. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2: Incremental smoothing and mapping using the Bayes tree. Intl. J. of Robotics Research 31, 217–236 (2012)

    Article  Google Scholar 

  19. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Trans. Robotics 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  20. Kaess, M., Wiliams, S., Indelman, V., Roberts, R., Leonard, J., Dellaert, F.: Concurrent filtering and smoothing. In: Intl. Conf. on Information Fusion, FUSION (2012)

    Google Scholar 

  21. Konolige, K.: Sparse sparse bundle adjustment. In: British Machine Vision Conf., BMVC (2010)

    Google Scholar 

  22. Konolige, K., Agrawal, M.: FrameSLAM: from bundle adjustment to realtime visual mapping. IEEE Trans. Robotics 24(5), 1066–1077 (2008)

    Article  Google Scholar 

  23. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2) (2001)

    Google Scholar 

  24. Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009), doi: http://doi.acm.org/10.1145/1486525.1486527

  25. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Autonomous Robots, 333–349 (1997)

    Google Scholar 

  26. Lupton, T., Sukkarieh, S.: Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Trans. Robotics 28(1), 61–76 (2012)

    Article  Google Scholar 

  27. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer (2004)

    Google Scholar 

  28. Mourikis, A., Roumeliotis, S.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 3565–3572 (2007)

    Google Scholar 

  29. Mourikis, A., Roumeliotis, S.: A dual-layer estimator architecture for long-term localization. In: Proc. of the Workshop on Visual Localization for Mobile Platforms at CVPR, Anchorage, Alaska (2008)

    Google Scholar 

  30. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3D reconstruction. In: Intl. Conf. on Computer Vision (ICCV), Rio de Janeiro (2007)

    Google Scholar 

  31. Rodríguez, A.L., de Teruel, P.E.L., Ruiz, A.: Reduced epipolar cost for accelerated incremental sfm. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3097–3104 (2011)

    Google Scholar 

  32. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. In: SIGGRAPH, pp. 835–846 (2006)

    Google Scholar 

  33. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: IEEE Conf. on Computer Vision and Pattern Recognition, CVPR (2008)

    Google Scholar 

  34. Steffen, R., Frahm, J.-M., Förstner, W.: Relative bundle adjustment based on trifocal constraints. In: Kutulakos, K.N. (ed.) ECCV 2010 Workshops, Part II. LNCS, vol. 6554, pp. 282–295. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Vidal, R., Ma, Y., Soatto, S., Sastry, S.: Two-View Multibody Structure from Motion. Intl. J. of Computer Vision 68(1), 7–25 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Indelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Indelman, V., Dellaert, F. (2015). Incremental Light Bundle Adjustment: Probabilistic Analysis and Application to Robotic Navigation. In: Sun, Y., Behal, A., Chung, CK. (eds) New Development in Robot Vision. Cognitive Systems Monographs, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43859-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43859-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43858-9

  • Online ISBN: 978-3-662-43859-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics