Advertisement

Automatic Diagnostics and Processing of EEG

  • Alexander E. Hramov
  • Alexey A. Koronovskii
  • Valeri A. Makarov
  • Alexey N. Pavlov
  • Evgenia Sitnikova
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

This chapter considers basic problems of automatic diagnostics and processing of EEG. We discuss the wavelet-based techniques in order to fully automatize “routine” operations, such as visual inspection of EEG. In addition to that, we exemplify some practical applications of wavelet methods for automatic analysis of pre-recorded signals of neuronal activity (off-line diagnostics), and also some examples of EEG analysis in real-time (on-line). We also discuss principles of fast and precise detection of transient events in EEG and organization of closed-loop control systems that can be used in BCI. Finally, we consider methods of artifact suppression in multichannel EEG based on a combination of wavelet and independent component analysis.

Keywords

Independent Component Analysis Independent Component Analysis Morlet Wavelet Cerebral Activity Sleep Spindle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Information Processing Systems 1995, Denver, vol. 8 (MIT, Cambridge, 1996), p. 757Google Scholar
  2. 2.
    R.G. Andrzejak, G. Widman, K. Lehnertz, C. Rieke, C.E. David, P. Elder, The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation of mesial temporal lobe epilepsy. Epilepsy Res. 44, 129 (2001)Google Scholar
  3. 3.
    J. Anemüller, T. Sejnowski, S. Makeig, Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw. 16, 1311 (2003)Google Scholar
  4. 4.
    R.E. Appleton, Vigabatrin in the management of generalized seizures in children. Seizure 4, 45 (1995)Google Scholar
  5. 5.
    T. Bassani, J.C. Nievola, Pattern recognition for brain–computer interface on disabled subjects using a wavelet transformation, in Proceedings of the 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB’08, Sun Valley, 15–17 Sept 2008, pp. 180–186Google Scholar
  6. 6.
    A. Bell, T. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129 (1995)Google Scholar
  7. 7.
    N. Benito, A. Fernandez-Ruiz, V.A. Makarov, J. Makarova, A. Korovaichuk, O. Herreras,Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization. Cereb. Cortex (2013). doi:10.1093/cercor/bht022 Google Scholar
  8. 8.
    A. Berenyi, M. Belluscio, D. Mao, G. Buzsaki, Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337(6095), 735 (2012)Google Scholar
  9. 9.
    P. Bergé, Y. Pomeau, C. Vidal, L’Ordre dans le Chaos (Hermann, Paris, 1988); P. Bergé, Y. Pomeau, C. Vidal, Order within Chaos (Wiley, New York, 1984)Google Scholar
  10. 10.
    S. Boccaletti, D.L. Valladares, Characterization of intermittent lag synchronization. Phys. Rev. E 62(5), 7497 (2000)Google Scholar
  11. 11.
    S. Boccaletti, J. Kurths, G.V. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)ADSMATHMathSciNetGoogle Scholar
  12. 12.
    S.V. Bozhokin, N.B. Syvorov, Wavelet-analysis of transient processes in EEG at photostimulation. Biomed. Electron. 3, 13 (2008)Google Scholar
  13. 13.
    G. Brown, S. Yamada, T. Sejnowski, Independent component analysis at the neural cocktail party. Trends Neurosci. 1, 54 (2001)Google Scholar
  14. 14.
    C. Brunner, R. Scherer, B. Graimann, G. Supp, G. Pfurtscheller, Online control of a brain–computer interface using phase synchronization. IEEE Trans. Biomed. Eng. 53, 2501 (2006)Google Scholar
  15. 15.
    J.L. Cabrera, J. Milnor, On–off intermittency in a human balancing task. Phys. Rev. Lett. 89(15), 158702 (2002)Google Scholar
  16. 16.
    G. Casella, L. Roger, Statistical Inference (Duxbury, Pacific Grove, 2002)Google Scholar
  17. 17.
    N. Cashdollar, N. Lavie, E. Duzel, Alleviating memory impairment through distraction. J. Neurosci. 33(48), 19012 (2013)Google Scholar
  18. 18.
    N.P. Castellanos, V.A. Makarov, Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 158, 300 (2006)Google Scholar
  19. 19.
    F. Cong, V. Alluri, A.K. Nandi, P. Toiviainen, R. Fa, B. Abu-Jamous, L. Gong, B.G.W. Craenen, H. Poikonen, M. Huotilainen, T. Ristaniemi, Linking brain responses to naturalistic music through analysis of ongoing EEG and stimulus features. IEEE Trans. Multimed. 5, 1060 (2013)Google Scholar
  20. 20.
    L. Debnath, Wavelet Transforms and Their Applications (Birkhauser, Boston, 2002)MATHGoogle Scholar
  21. 21.
    L. De Gennaro, M. Ferrara, Sleep spindles: an overview. Sleep Med. Rev. 7, 423 (2003)Google Scholar
  22. 22.
    A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9 (2004)Google Scholar
  23. 23.
    A. Destexhe, T.J. Sejnowski, Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations (Oxford University Press, Oxford, 2001)Google Scholar
  24. 24.
    D.L. Donoho, I.M. Johnstone, G. Kerkyacharian, D. Picardi, Wavelet shrinkage: asymptopia? J. R. Stat. Soc. (Stat. Methodol.) B57, 301 (1995)Google Scholar
  25. 25.
    W.H. Drinkenburg, M.L. Schuurmans, A.M. Coenen, J.M. Vossen, E.L.M. van Luijtelaar, Ictal stimulus processing during spike–wave discharges in genetic epileptic rats. Behav. Brain Res. 143, 141 (2003)Google Scholar
  26. 26.
    A. Fernandez-Ruiz, V.A. Makarov, N. Benito, O. Herreras, Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units. J. Neurosci. 32, 5165 (2012)Google Scholar
  27. 27.
    A. Fernandez-Ruiz, S. Munoz, M. Sancho, J. Makarova, V.A. Makarov, O. Herreras, Cytoarchitectonic and dynamic origins of giant positive LFPs in the dentate gyrus. J. Neurosci. 33(39), 15518 (2013)Google Scholar
  28. 28.
    A. Flexer, H. Bauer, J. Pripfl, G. Dorffner, Using ICA for removal of ocular artifacts in EEG recorded from blind subjects. Neural Netw. 18, 998 (2005)Google Scholar
  29. 29.
    K. Friston, Modes or models: a critique on independent component analysis for fMRI. Trends Cogn. Sci. 2, 373 (1998)Google Scholar
  30. 30.
    P. Gloor, Generalized cortico-reticular epilepsies: some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9, 249 (1968)Google Scholar
  31. 31.
    P. Gong, A.R. Nikolaev, C. van Leeuwen, Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. Phys. Rev. E 76(1), 011904 (2007)Google Scholar
  32. 32.
    C.L. Gottesmann, The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci. Biobehav. Rev. 20, 367 (1996)Google Scholar
  33. 33.
    C. Guger, H. Ramoser, G. Pfurtscheller, Real-time EEG analysis for a brain–computer interface (BCI) with subject-specific spatial patterns. IEEE Trans. Neural Syst. Rehabil. Eng. 8(4), 447 (2000)Google Scholar
  34. 34.
    P.W. Hammer, N. Platt, S.M. Hammel, J.F. Heagy, B.D. Lee, Experimental observation of on–off intermittency. Phys. Rev. Lett. 73(8), 1095 (1994)Google Scholar
  35. 35.
    E. Haselsteiner, G. Pfutscheller, Using time-dependent neural networks for EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 457 (2000)Google Scholar
  36. 36.
    J.F. Heagy, N. Platt, S.M. Hammel, Characterization of on–off intermittency. Phys. Rev. E 49(2), 1140 (1994)Google Scholar
  37. 37.
    H. Hori, M. Aiba, B. He, Spatio-temporal cortical source imaging of brain electrical activity by means of time-varying parametric projection filter. IEEE Trans. Biomed. Eng. 51, 768 (2004)Google Scholar
  38. 38.
    A.E. Hramov, A.A. Koronovskii, Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhys. Lett. 70(2), 169 (2005)Google Scholar
  39. 39.
    A.E. Hramov, A.A. Koronovskii, I.S. Midzyanovskaya, E.Yu. Sitnikova, C.M. Rijn, On–off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy. Chaos 16, 043111 (2006)ADSGoogle Scholar
  40. 40.
    A.E. Hramov, A.A. Koronovskii, M.K. Kurovskaya, S. Boccaletti, Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization. Phys. Rev. Lett. 97, 114101 (2006)ADSGoogle Scholar
  41. 41.
    A.E. Hramov, A.E. Khramova, A.A. Koronovskii, S. Boccaletti, Synchronization in networks of slightly nonidentical elements. Int. J. Bifurc. Chaos 18(3), 258 (2008)Google Scholar
  42. 42.
    A.E. Hramov, A.A. Koronovskii, M.K. Kurovskaya, O.I. Moskalenko, Type-I intermittency with noise versus eyelet intermittency. Phys. Lett. A 375, 1646 (2011)ADSMATHGoogle Scholar
  43. 43.
    M. Huang, P. Wu, Y. Liu, L. Bi, H. Chen, Application and contrast in brain–computer interface between Hilbert–Huang transform and wavelet transform, in The 9th International Conference for Young Computer Scientists, ICYCS, Zhang Jia Jie, 18–21 Nov 2008, pp. 1706–1710Google Scholar
  44. 44.
    A. Hyvárinen, Independent component analysis: recent advances. Philos. Trans. R. Soc. A 371, 20110534 (2013)Google Scholar
  45. 45.
    A. Hyvárinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)Google Scholar
  46. 46.
    A. Hyvárinen, P. Pajunen, Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12, 209 (1999)Google Scholar
  47. 47.
    H. Ito, A.R. Nikolaev, C. van Leeuwen, Dynamics of spontaneous transitions between global brain states. Hum. Brain Mapp. 28, 904 (2007)Google Scholar
  48. 48.
    J. Iriarte, E. Urrestarazu, M. Valencia, M. Alegre, A. Malanda, C. Viteri, J. Artieda, Independent component analysis as a tool to eliminate artifacts in EEG. A quantitative study. J. Clin. Neurophysiol. 20, 249–257 (2003)Google Scholar
  49. 49.
    J. Iriarte, E. Urrestarazu, J. Artieda, M. Valencia, P. Levan, C. Viteri, M. Alegre, Independent component analysis in the study of focal seizures. J. Clin. Neurophysiol. 23(6), 551 (2006)Google Scholar
  50. 50.
    C. James, O. Gibson, Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis. IEEE Trans. Biomed. Eng. 50, 1108 (2003)Google Scholar
  51. 51.
    C. James, C. Hesse, Independent component analysis for biomedical signals. Physiol. Meas. 26, R15–R39 (2005)ADSGoogle Scholar
  52. 52.
    C. James, D. Lowe, Extracting multisource brain activity from single EM channel. Artif. Intell. Med. 28, 89 (2003)Google Scholar
  53. 53.
    M. Jarvis, P. Mitra, Sampling properties of the spectrum and coherency of sequences of action potential. Neural Comput. 13, 717 (2001)MATHGoogle Scholar
  54. 54.
    C. Joyce, I. Gorodnitsky, M. Kutas, Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2), 313 (2004)Google Scholar
  55. 55.
    T. Jung, C. Humphries, T. Lee, M. McKeown, V. Iragui, S. Makeig, Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163 (2000)Google Scholar
  56. 56.
    T. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T. Sejnowski, Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 11(10), 1745 (2000)Google Scholar
  57. 57.
    J.F. Kalaska, Neuroscience: brain control of a helping hand. Nature 453, 994 (2004)ADSGoogle Scholar
  58. 58.
    N. Kannathala, M.L. Choob, U.R. Acharyab, P.K. Sadasivana, Entropies for detection of epilepsy in EEG. Comput. Methods Biomed. 3, 125 (2005)Google Scholar
  59. 59.
    A. Kaplan, J.J. Lim, K.S. Jin, B.W. Park, J.G. Byeon, S.U. Tarasova, Unconscious operant conditioning in the paradigm of brain–computer interface based on color perception. Int. J. Neurosci. 115, 781–802 (2005)Google Scholar
  60. 60.
    L. Ke, R. Li, Classification of EEG signals by multi-scale filtering and PCA, in IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS’2009, Shanghai, 20–22 Nov 2009, pp. 362–366Google Scholar
  61. 61.
    J. Kierkels, G. Boxtel, L. Vogten, A model-based objective evaluation of eyemovement correction in EEG recordings. IEEE Trans. Biomed. Eng. 53, 246 (2006)Google Scholar
  62. 62.
    C.M. Kim, Mechanism of chaos synchronization and on–off intermittency. Phys. Rev. E 56(3, Part B), 3697 (1997)Google Scholar
  63. 63.
    A.A. Koronovskii, A.A. Tyischenko, A.E. Hramov, Turbulent phase distribution during lag synchronization breakage. Tech. Phys. Lett. 31(11), 910 (2005)Google Scholar
  64. 64.
    A.A. Koronovskii, G.D. Kuznetsova, I.S. Midzyanovskaya, E.Yu. Sitnikova, D.I. Trubetskov, A.E. Hramov, Regularities of alternate behavior in spontaneous nonconvulsive seizure activity in rats. Dokl. Biol. Sci. 409, 275 (2006)Google Scholar
  65. 65.
    A.A. Koronovskii, I.M. Minukhin, A.A. Tyischenko, A.E. Hramov, I.S. Midzanovskaja, Y.E. Sitnikova, E.L.M. van Luijtelaar, C.M. Rijn, Application of continuous wavelet transform to analysis of intermittent behavior. Appl. Nonlinear Dyn. 15(4), 34 (2007)Google Scholar
  66. 66.
    A.A. Koronovskii, O.I. Moskalenko, P.V. Popov, A.E. Hramov, Method of allocation of characteristic phases of systems behaviour according time data. Russian Federation Patent No 2337610, Moscow, FIPS, 10.11.2008, Bulletin No 31, 2008Google Scholar
  67. 67.
    A.A. Koronovskii, E.L.M. van Luijtelaar, A.A. Ovchinnikov, E.Yu. Sitnikova, A.E. Hramov, Diagnostics and analysis of oscillatory neuronal network activity of brain with continuous wavelet analysis. Appl. Nonlinear Dyn. 19(1), 86 (2011)MATHGoogle Scholar
  68. 68.
    A. Korzeniewska, M. Manczak, M. Kaminski, K. Blinowska, S. Kasicki, Determination of information flow direction among brain structures by a modified directed transfer function method (dDTF). J. Neurosci. Methods 125, 195 (2003)Google Scholar
  69. 69.
    G.K. Kostopoulos, Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin. Neurophysiol. 111(Suppl. 2), S27 (2000)Google Scholar
  70. 70.
    M.R. Kousarrizi, A.A. Ghanbari, M. Teshnehlab, M. Aliyari, A. Gharaviri, Feature extraction and classification of EEG signals using wavelet transform, SVM and artificial neural networks for brain–computer interfaces, in Proceedings of International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, IJCBS’09, Shanghai, 3–5 Aug 2009, pp. 352–355Google Scholar
  71. 71.
    G. Krausz, C. Brunia, C. Neuper, G. Pfurtscheller, Stimulus-preceding negativity and oscillatory changes of the EEG in a non-motor anticipation paradigm. Int. J. Psychophysiol. 45, 124 (2002)Google Scholar
  72. 72.
    R.T. Lauer, P.H. Peckham, K.L. Kilgore, W.J. Heetderks, Applications of cortical signals to neuroprosthetic control: a critical review. Nat. Med. 8, 205 (2000)Google Scholar
  73. 73.
    T. Lee, M. Girolomi, T. Sejnowski, Independent component analysis using an extended infomax algorithm for mixed subGaussian and superGaussian sources. Neural Comput. 11, 417 (1999)Google Scholar
  74. 74.
    J.C. Letelier, P.P. Weber, Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods 101, 93 (2000)Google Scholar
  75. 75.
    V.A. Makarov, J. Makarova, O. Herreras, Disentanglement of local field potential sources by independent component analysis. J. Comput. Neurosci. 29, 445 (2010)Google Scholar
  76. 76.
    J. Makarova, J.M. Ibarz, V.A. Makarov, N. Benito, O. Herreras, Parallel readout of pathway-specific inputs to laminated brain structures. Front. Syst. Neurosci. 5, 77 (2011). doi:10.3389/fnsys.2011.00077 Google Scholar
  77. 77.
    J.P. Manning, D.A. Richards, N.G. Bowery, Pharmacology of absence epilepsy. Trends Pharmacol. Sci. 24(10), 542 (2003)Google Scholar
  78. 78.
    S.G. Mason, G.E. Birch, A general framework for brain–computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70 (2003)Google Scholar
  79. 79.
    S.G. Mason, R. Bohringer, J.F. Borisoff, G.E. Birch, Real-time control of a video game with a direct brain–computer interface. J. Clin. Neurophysiol. 21(6), 404 (2004)Google Scholar
  80. 80.
    M. McKeown, T. Jung, S. Makeig, G. Brown, Spatially independent activity patterns in functional magnetic resonance imaging data during the stroop color-naming task. Proc. Natl. Acad. Sci. U.S.A. 3, 803 (1998)ADSGoogle Scholar
  81. 81.
    P.E. McSharry, L.A. Smith, L. Tarassenko, Prediction of epileptic seizures: are nonlinear methods relevant? Nat. Med. 9, 241 (2003)Google Scholar
  82. 82.
    C. Melissant, A. Ypma, E. Frietman, C. Stam, A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements. Artif. Intell. Med. 33, 209 (2005)Google Scholar
  83. 83.
    H.R. Mohseni, A. Maghsoudi, M.B. Shamsollahi, Seizure detection in EEG signals: a comparison of different approaches. Conf. Proc. IEEE Eng. Med. Biol. Soc. Suppl. 6724 (2006)Google Scholar
  84. 84.
    F. Mormann, R.G. Andrzejak, C.E. Elger, K. Lehnertz, Seizure prediction: the long and winding road. Brain 130, 314 (2007)Google Scholar
  85. 85.
    Y. Nagai, X.D. Hua, Controlling on–off intermittent dynamics. Phys. Rev. E 54, 1190 (1996)ADSGoogle Scholar
  86. 86.
    A.I. Nazimov, A.N. Pavlov, A.E. Hramov, V.V. Grubov, A.A. Koronovskii, E. Sitnikova, Adaptive wavelet-based recognition of oscillatory patterns on electroencephalograms. Proc. SPIE 8580, 85801 (2013)ADSGoogle Scholar
  87. 87.
    A.I. Nazimov, A.N. Pavlov, A.E. Hramov, V.V. Grubov, E. Sitnikova, A.A. Koronovskii, The adaptive method of recognition of specific oscillatory patterns on the basis of wavelet transformation. J. Commun. Technol. Electron. 58, 790–795 (2013)Google Scholar
  88. 88.
    A.I. Nazimov, A.N. Pavlov, A.A. Nazimova, V.V. Grubov, A.A. Koronovskii, E. Sitnikova, A.E. Hramov, Serial identification of EEG patterns using adaptive wavelet-based analysis. Eur. Phys. J. Spec. Top. 222, 2713–2722 (2013)Google Scholar
  89. 89.
    S. Olbrich, H. Olbrich, M. Adamaszek, I. Jahna, U. Hegerla, K. Stengler, Altered EEG lagged coherence during rest in obsessive–compulsive disorder. Clin. Neurophysiol. 124, 2421 (2013)Google Scholar
  90. 90.
    A.A. Ovchinnikov, A. Luttjohann, A.E. Hramov, E.L.M. van Luijtelaar, An algorithm for real-time detection of spike–wave discharges in rodents. J. Neurosci. Methods 194, 172 (2010)Google Scholar
  91. 91.
    A.A. Ovchinnikov, A.E. Hramov, A. Luttjohann, A.A. Koronovskii, E.L.M. van Luijtelaar, Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals. Tech. Phys. 56(1), 1 (2011)Google Scholar
  92. 92.
    M. Papadrakakis, N.D. Lagaros, Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput. Methods Appl. Mech. Eng. 191(32), 3491 (2002)MATHGoogle Scholar
  93. 93.
    A.N. Pavlov, V.A. Makarov, I. Makarova, F. Panetsos, Sorting of neural spikes: when wavelet based methods outperform principal component analysis. Nat. Comput. 6, 269 (2007)MATHMathSciNetGoogle Scholar
  94. 94.
    W.D. Penny, S.J. Roberts, E.A. Curran, M.J. Stokes, EEG-based communication: a pattern recognition approach. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 214 (2000)Google Scholar
  95. 95.
    D. Percival, A.T. Walden, Spectral Analysis for Physical Applications (Cambridge University Press, Cambridge, 1993)MATHGoogle Scholar
  96. 96.
    J.L. Perez Velazquez, H. Khosravani, A. Lozano, B.L. Bardakjian, P.L. Carlen, R.A. Wennberg, Type III inermittency in human partial epilepsy. Eur. J. Neurosci. 11, 2571 (1999)Google Scholar
  97. 97.
    G. Pfurtscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlögl, B. Obermaier, M. Pregenzer, Current trends in Graz brain–computer interface (BCI) research. IEEE Trans. Neural Syst. Rehabil. Eng. 8, 216 (2000)Google Scholar
  98. 98.
    G. Pfurtscheller, R. Scherer, R. Leeb, C. Keinrath, C. Neuper, F. Lee, H. Bischof, Viewing moving objects in virtual reality can change the dynamics of sensorimotor EEG rhythms. Teleoperators Virtual Environ. 16, 111 (2007)Google Scholar
  99. 99.
    A.S. Pikovsky, G.V. Osipov, M.G. Rosenblum, M. Zaks, J. Kurths, Attractor–repeller collision and eyelet intermittency at the transition to phase synchronization. Phys. Rev. Lett. 79(1), 47 (1997)Google Scholar
  100. 100.
    D. Pinault, T.J. O’Brien, Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat. Syst. 3(3), 181 (2005)Google Scholar
  101. 101.
    D. Pinault, M. Vergnes, C. Marescaux, Medium-voltage 5–9 Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181 (2001)Google Scholar
  102. 102.
    D. Pinault, A. Slezia, L. Acsady, Corticothalamic 5–9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats. J. Physiol. 574(Part 1), 209 (2006)Google Scholar
  103. 103.
    N. Platt, E.A. Spiegel, C. Tresser, On–off intermittency: a mechanism for bursting. Phys. Rev. Lett. 70(3), 279 (1993)Google Scholar
  104. 104.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.T. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1997)Google Scholar
  105. 105.
    R. Privik, R. Broughton, R. Coppola, R. Davidson, N. Fox, M. Nuwer, Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 30, 547 (1993)Google Scholar
  106. 106.
    Q.R. Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661 (2004)MATHGoogle Scholar
  107. 107.
    E. Rodriguez, N. George, J.P. Lachaux, J. Martinerie, B. Renault, F. Varela, Perception’s shadow: long-distance synchronization in the human brain. Nature 397, 430 (1999)ADSGoogle Scholar
  108. 108.
    N.C. Rogasch, P.B. Fitzgerald, Assessing cortical network properties using TMS-EEG. Hum. Brain Mapp. 34, 1652 (2013)Google Scholar
  109. 109.
    R. Scherer, F. Lee, A. Schlgl, R. Leeb, H. Bischof, G. Pfurtscheller, Toward self-paced brain–computer communication: navigation through virtual worlds biomedical engineering. IEEE Trans. Biomed. Eng. 55, 675 (2008)Google Scholar
  110. 110.
    T. Schreiber, A. Schmitz, Surrogate time series. Physica D 142, 346–382 (2000)ADSMATHMathSciNetGoogle Scholar
  111. 111.
    E. Sitnikova, E.L.M. van Luijtelaar, Cortical and thalamic coherence during spike–wave seizures in WAG/Rij rats. Epilepsy Res. 71, 159 (2006)Google Scholar
  112. 112.
    E. Sitnikova, A.E. Hramov, A.A. Koronovskii, E.L.M. van Luijtelaar, Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180, 304 (2009)Google Scholar
  113. 113.
    E. Sitnikova, A.A. Koronovskii, A.E. Hramov, Analysis of epileptic activity of brain in case of absence epilepsy: applied aspects of nonlinear dynamics. Appl. Nonlinear Dyn. 19(6), 173–182 (2011)MATHGoogle Scholar
  114. 114.
    E. Sitnikova, A.E. Hramov, V.V. Grubov, A.A. Ovchinnkov, A.A. Koronovsky, On–off intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy. Brain Res. 1436, 147 (2012)Google Scholar
  115. 115.
    M. Steriade, Neuronal Substrates of Sleep and Epilepsy (Cambridge University Press, Cambridge, 2003)Google Scholar
  116. 116.
    M. Steriade, R. McCarley, A Role for the Preoptic Sleep-Promoting System in Absence Epilepsy (Plenum, New York, 1990)Google Scholar
  117. 117.
    M. Steriade, D.A. McCormick, T.J. Sejnowski, Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679 (1993)ADSGoogle Scholar
  118. 118.
    A. Subasi, Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29, 343 (2005)Google Scholar
  119. 119.
    N. Suntsova, S. Kumar, R. Guzman-Marin, M.N. Alam, R. Szymusiak, D. McGinty, A role for the preoptic sleep-promoting system in absence epilepsy. Neurobiol. Dis. 36(1), 126 (2009)Google Scholar
  120. 120.
    N.E. Sviderskaya, T.N. Dashinskaja, G.V. Taratunova, Spatial organization of EEG activation during the creative processes. J. High. Nerv. Activ. 51, 393 (2001)Google Scholar
  121. 121.
    J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77 (1992)ADSMATHGoogle Scholar
  122. 122.
    D. Thomson, Spectrum estimation and harmonic analysis. Proc. IEEE (Spec. Issue Spectr. Estim.) 70, 1055 (1982)Google Scholar
  123. 123.
    S. Tong, A. Bezerianos, J. Paul, Y. Zhu, N. Thakor, Removal of ECG interference from the EEG recordings in small animals using independent component analysis. J. Neurosci. Methods 108, 11 (2001)Google Scholar
  124. 124.
    Y. Tran, A. Craig, P. Boord, D. Craig, Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med. Biol. Eng. Comput. 42, 627 (2004)Google Scholar
  125. 125.
    E. Urrestarazu, J. Iriarte, M. Alegre, M. Valencia, C. Viteri, J. Artieda, Independent component analysis removing artifacts in ictal recordings. Epilepsia 45, 1 (2004)Google Scholar
  126. 126.
    E.L.M. van Luijtelaar, A.M. Coenen, Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci. Lett. 70(3), 393 (1986)Google Scholar
  127. 127.
    F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001)Google Scholar
  128. 128.
    V.M. Vaughan, Guest editorial brain–computer interface technology: a review of the second international meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 94 (2003)Google Scholar
  129. 129.
    B.M. Velichkovskii, Cognitive Science. Fundamentals of Cognitive Psychology (Academy, Moscow, 2006)Google Scholar
  130. 130.
    M. Vergnes, C. Marescaux, G. Micheletti, A. Depaulis, L. Rumbach, J.M. Warter, Enhancement of spike and wave discharges by GABA mimetic drugs in rats with spontaneous petit-mal-like epilepsy. Neurosci. Lett. 44(1), 91 (1984)Google Scholar
  131. 131.
    J.J. Vidal, Real-time detection of brain events in EEG. Proc. IEEE 65, 633 (1997)Google Scholar
  132. 132.
    R. Vigario, Extraction of ocular artifacts from EEG using independent component analysis. Electroencephalogr. Clin. Neurophysiol. 103, 395 (1997)Google Scholar
  133. 133.
    R. Vigario, J. Särelö, V. Jousmäki, H. Hämäläinem, E. Oja, Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 47, 589 (2000)Google Scholar
  134. 134.
    A. von Stein, P. Rappelsberger, J. Sarnthein, H. Petsche, Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb. Cortex 9, 137 (1999)Google Scholar
  135. 135.
    G. Wallstrom, R. Kass, A. Miller, J. Cohn, N. Fox, Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int. J. Psychophysiol. 53, 105 (2004)Google Scholar
  136. 136.
    J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767 (2002)Google Scholar
  137. 137.
    R. Yuan, D. Yu, F. Liang, Adaptive evolutionary Monte Carlo for optimizations with applications to sensor placement problems. Stat. Comput. 18, 375–390 (2008)MathSciNetGoogle Scholar
  138. 138.
    D.M. Zenett, A.S. Mikhailov, Mutual synchronization in ensembles of globally coupled neural networks. Phys. Rev. E 58(1), 872 (1998)Google Scholar
  139. 139.
    M.O. Zhuravlev, A.A. Koronovskii, O.I. Moskalenko, A.A. Ovchinnikov, A.E. Hramov, Ring intermittency near the boundary of the synchronous time scales of chaotic oscillators. Phys. Rev. E 83, 027201 (2011)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexander E. Hramov
    • 1
    • 2
  • Alexey A. Koronovskii
    • 1
    • 2
  • Valeri A. Makarov
    • 3
  • Alexey N. Pavlov
    • 1
    • 4
  • Evgenia Sitnikova
    • 5
  1. 1.Research and Education Center ‘Nonlinear Dynamics of Complex Systems’Saratov State Technical UniversitySaratovRussia
  2. 2.Department of Nonlinear ProcessesSaratov State UniversitySaratovRussia
  3. 3.Department of Applied MathematicsComplutense UniversityMadridSpain
  4. 4.Physics DepartmentSaratov State UniversitySaratovRussia
  5. 5.Institute for Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations