Skip to main content

Classification of Neuronal Spikes from Extracellular Recordings

  • Chapter
  • First Online:
Wavelets in Neuroscience

Abstract

In this chapter, we consider the problem of spike separation from extracellularly recorded action potentials, which is important when studying the dynamics of small groups of neurons. We discuss general principles of spike sorting and propose several wavelet-based techniques to improve the quality of spike separation, including an approach for optimal sorting with wavelets and filtering techniques. Finally, we consider the application of artificial neural networks to solve this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.P. Castellanos, E. Malmierca, A. Nunez, V.A. Makarov, Corticofugal modulation of the tactile response coherence of projecting neurons in the gracilis nucleus. J. Neurophysiol. 98(5), 2537 (2007)

    Google Scholar 

  2. V.A. Makarov, A.N. Pavlov, A.N. Tupitsyn, F. Panetsos, A. Moreno, Stability of neural firing in the trigeminal nuclei under mechanical whisker stimulation. Comput. Intell. Neurosci. 2010, 340541 (2010)

    Article  Google Scholar 

  3. M. Lewicki, A review of methods for spike sorting: the detection and classification of neural potencials. Netw. Comput. Neural Syst. 9, R53 (1998)

    Article  MATH  Google Scholar 

  4. K. Harris, D. Henze, J. Csicsvari, H. Hirase, G. Buzsaki, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401 (2000)

    Google Scholar 

  5. B. Wheeler, W. Heetderks, A comparison of techniques for classification of multiple neural signals. IEEE Trans. Biomed. Eng. 29, 752 (1982)

    Article  Google Scholar 

  6. B. Wheeler, Automatic Discrimination of Single Units (CRC, Boca Raton, 1999)

    Google Scholar 

  7. J. Csicsvari, H. Hirase, A. Czurko, G. Buzsaki, Reliability and state dependence of pyramidal cell–interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21, 179 (1998)

    Article  Google Scholar 

  8. S. Shoham, M.R. Fellows, R.A. Normann, Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods 127, 111 (2003)

    Article  Google Scholar 

  9. G. Buzsaki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446 (2004)

    Article  Google Scholar 

  10. J. Letelier, P. Weber, Spike sorting based on discrete wavelet transform coefficients. J. Neurosci. Methods 101, 93 (2000)

    Article  Google Scholar 

  11. E. Hulata, R. Segev, E. Ben-Jacob, A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. J. Neurosci. Methods 117, 1 (2002)

    Article  Google Scholar 

  12. R. Quian Quiroga, Z. Nadasdy, Y. Ben-Shaul, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661 (2004)

    Article  MATH  Google Scholar 

  13. A.N. Pavlov, V.A. Makarov, I. Makarova, F. Panetsos, Separation of extracellular spikes: when wavelet based methods outperform the principal component analysis, in Mechanisms, Symbols, and Models Underlying Cognition, ed. by J. Mira, J.R. Alvarez. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2005), p. 123

    Google Scholar 

  14. A.N. Pavlov, V.A. Makarov, I. Makarova, F. Panetsos, Sorting of neural spikes: when wavelet based methods outperform principal component analysis. Nat. Comput. 6, 269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. E.M. Schmidt, Computer separation of multi-unit neuroelectric data: a review. J. Neurosci. Methods 12, 95 (1984)

    Article  Google Scholar 

  16. C.M. Gray, P.E. Maldonado, M. Wilson, B. McNaughton, Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods 63, 43 (1995)

    Article  Google Scholar 

  17. M. Salganicoff, M. Sarna, L. Sax, G.L. Gerstein, Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. I. Algorithms and implementation. J. Neurosci. Methods 25, 181 (1988)

    Article  Google Scholar 

  18. M.F. Sarna, P. Gochin, J. Kaltenbach, M. Salganicoff, G.L. Gerstein, Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. II. Performance comparison to other sorters. J. Neurosci. Methods 25, 189 (1988)

    Google Scholar 

  19. G. Zouridakis, D. Tam, Multi-unit spike discrimination using wavelet transforms. Comput. Biol. Med. 27, 9 (1997)

    Article  Google Scholar 

  20. K. Kim, S. Kim, A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio. IEEE Trans. Biomed. Eng. 50, 999 (2003)

    Article  Google Scholar 

  21. M.S. Fee, P.P. Mitra, D. Kleinfeld, Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J. Neurophysiol. 76, 3823 (1996)

    Google Scholar 

  22. R.K. Snider, A.B. Bonds, Classification of non-stationary neural signals. J. Neurosci. Methods 84, 155 (1998)

    Article  Google Scholar 

  23. V.A. Makarov, J. Makarova, O. Herreras, Compact internal representation of dynamic situations: neural network implementing the causality principle. J. Comput. Neurosci. 29, 445 (2010)

    Article  Google Scholar 

  24. A. Fernandez-Ruiz, V.A. Makarov, N. Benito, O. Herreras, Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units. J. Neurosci. 32, 5165 (2012)

    Article  Google Scholar 

  25. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (Wiley-Interscience, New York, 1990)

    Book  Google Scholar 

  26. G.M. Downs, J.M. Barnard, Clustering methods and their uses in computational chemistry. Rev. Comput. Chem. 18, 1 (2002)

    Google Scholar 

  27. J.A. Freeman, C. Nicholson, Experimental optimization of current-source density technique for anuran cerebellum. J. Neurophysiol. 38, 369 (1975)

    Google Scholar 

  28. W. Simon, The real-time sorting of neuro-electric action potentials in multiple unit studies. Electro-Encephalogr. Clin. Neurophysiol. 18, 192 (1965)

    Article  Google Scholar 

  29. J. Feldman, F. Roberge, Computer detection and analysis of neuronal spike sequences. Informatics 9, 185 (1971)

    Google Scholar 

  30. G. Dinning, A.C. Sanderson, Real-time classification of multiunit neural signals using reduced feature sets. IEEE Trans. Biomed. Eng. 28, 804 (1981)

    Article  Google Scholar 

  31. J. Eggermont, W. Epping, A. Aertsen, Stimulus dependent neural correlations in the auditory midbrain of the grassfrog. Biol. Cybern. 47, 103 (1983)

    Article  Google Scholar 

  32. E. Glaser, W. Marks, On-line separation of interleaved neuronal pulse sequences. Data Acquisition Process. Biol. Med. 5, 137 (1968)

    Article  Google Scholar 

  33. E. Glaser, Separation of neuronal activity by waveform analysis, in Advances in Biomedical Engineering, vol. 1 (Academic, New York, 1971), p. 77

    Google Scholar 

  34. G. Gerstein, W. Clark, Simultaneous studies of firing patterns in several neurons. Science 143, 1325 (1964)

    Article  ADS  Google Scholar 

  35. G. Gerstein, M. Bloom, I. Espinosa, S. Evanczuk, M. Turner, Design of a laboratory for multineuron studies. IEEE Trans. Syst. Cybern. 13, 668 (1983)

    Article  Google Scholar 

  36. W.W. Cooley, P.R. Lohnes, Multivariate Data Analysis (Wiley, New York, 1971)

    MATH  Google Scholar 

  37. K. Rao, P. Yip (eds.), The Transform and Data Compression Handbook (CRC, Baton Rouge, 2001)

    MATH  Google Scholar 

  38. D.D. Muresan, T.W. Parks, Adaptive principal components and image denoising. IEEE Int. Conf. Image Process. 1, 101 (2003)

    Google Scholar 

  39. I.T. Jolliffe, Principal Component Analysis (Springer, New York, 2002)

    MATH  Google Scholar 

  40. H.F. Kaiser, The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141 (1960)

    Article  Google Scholar 

  41. R.B. Cattell, The scree test for the number of factors. Multivar. Behav. Res. 1, 245 (1966)

    Article  Google Scholar 

  42. M. Blatt, S. Wiseman, E. Domany, Superparamagnetic clustering of data. Phys. Rev. Lett. 76, 3251 (1996)

    Article  ADS  Google Scholar 

  43. V.A. Makarov, A.N. Pavlov, A.N. Tupitsyn, Optimal sorting of neural spikes with wavelet and filtering techniques. Proc. SPIE 6855, 68550M (2008)

    Article  ADS  Google Scholar 

  44. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in Parallel Distributed Processing, vol. 1 (MIT, Cambridge, 1986)

    Google Scholar 

  45. S. Haykin, Neural Networks. A Comprehensive Foundation (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  46. T. Kohonen, Selforganization and Associative Memory (Springer, New York, 1989)

    Book  Google Scholar 

  47. J. Hopfield, D. Tank, Neural computation of decision in optimization problems. Biol. Cybern. 52, 141 (1985)

    MATH  MathSciNet  Google Scholar 

  48. R. Callan, The Essence of Neural Networks (Prentice Hall, London, 1999)

    Google Scholar 

  49. F. Rosenblatt, Two theorems of statistical separability in the perceptron, in Mechanisation of Thought Processes, vol. 1 (HM Stationery Office, London, 1959), p. 421

    Google Scholar 

  50. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7, 115 (1943)

    Article  MathSciNet  Google Scholar 

  51. A.N. Tupitsyn, A.N. Pavlov, V.A. Makarov, Separation of extracellular spikes with wavelets and neural networks. Proc. SPIE 7176, 71760M (2009)

    Article  ADS  Google Scholar 

  52. T. Kugarajah, Q. Zhang, Multidimensional wavelet frames. IEEE Trans. Neural Netw. 6, 1552 (1995)

    Article  Google Scholar 

  53. H. Szu, B. Telfer, J. Garcia, Wavelet transforms and neural networks for compression and recognition. Neural Netw. 9, 695 (1996)

    Article  Google Scholar 

  54. Y. Cheng, B. Chen, F. Shiau, Adaptive wavelet network control design for nonlinear systems. Proc. Natl. Sci. Counc. Repub. China (A) 22, 783 (1998)

    Google Scholar 

  55. P.R. Chang, W. Fu, M. Yi, Short term load forecasting using wavelet networks. Eng. Intell. Syst. Electr. Eng. Commun. 6, 217 (1998)

    Google Scholar 

  56. L. Cao, Y. Hong, H. Fang, G. He, Predicting chaotic time-series with wavelet networks. Physica D 85, 225 (1995)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E. (2015). Classification of Neuronal Spikes from Extracellular Recordings. In: Wavelets in Neuroscience. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43850-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43850-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43849-7

  • Online ISBN: 978-3-662-43850-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics