Skip to main content

Molecular Farming in Plants: The Long Road to the Market

  • Chapter
  • First Online:
Commercial Plant-Produced Recombinant Protein Products

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 68))

Abstract

Recombinant proteins can be produced on a commercial scale using a diverse array of host systems based on microbes, animals, and plants. Commercially established processes have resolved to a small number of standard platforms, including the bacterium Escherichia coli, the yeasts Saccharomyces cerevisiae and Pichia pastoris, and certain well-characterized insect and mammalian cell lines. In contrast, many different plant-based systems have been developed and only in the last few years have standardized platforms begun to emerge. The diversity of plant-based platforms has been advantageous to molecular farming by helping to overcome technical issues, but the failure to focus on specific platforms has made the transition from experimental development to a viable commercial process a long and difficult one. As well as the technical and economic principles required to develop a viable manufacturing processes, plants have also been held back by the lack of a harmonized regulatory system for plant-derived pharmaceutical products, such that much of the early commercial development of molecular farming focused on non-pharmaceutical proteins. Despite these hurdles, pharmaceutical molecular farming is now firmly established in the market, and we are witnessing the dawn of a new age in which plants are regarded as competitive platforms for the commercial production of diverse recombinant pharmaceutical protein products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aviezer D, Almon-Brill E, Shaaltiel Y et al (2009a) Novel enzyme replacement therapy for Gaucher disease: ongoing Phase III clinical trial with recombinant human glucocerebrosidase expressed in plant cells. Mol Genet Metab 96:S13–S14

    Article  Google Scholar 

  • Aviezer D, Brill-Almon E, Shaaltiel Y et al (2009b) A plant-derived recombinant human glucocerebrosidase enzyme—a preclinical and phase I investigation. PLoS One 4:e4792

    Article  PubMed Central  PubMed  Google Scholar 

  • Azzoni AR, Kusnadi AR, Miranda EA et al (2002) Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol Bioeng 80:268–276

    Article  CAS  PubMed  Google Scholar 

  • Azzoni AR, Farinas CS, Miranda EA (2005) Transgenic corn seed for recombinant protein production: relevant aspects on the aqueous extraction of native components. J Sci Food Agric 85:609–614

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Buyel JF, Fischer R (2012) Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnol Bioeng 109:2575–2588

    Article  CAS  PubMed  Google Scholar 

  • Buyel JF, Fischer R (2014a) Flocculation increases the efficacy of depth filtration during the downstream processing of recombinant pharmaceutical proteins produced in tobacco. Plant Biotechnol J 12:240–252

    Article  CAS  PubMed  Google Scholar 

  • Buyel JF, Fischer R (2014b) Scale-down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves. Biotechnol J 9:415–425

    Article  CAS  PubMed  Google Scholar 

  • Buyel JF, Kaever T, Buyel JJ et al (2013a) Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5’UTR combination. Biotechnol Bioeng 110:471–482

    Google Scholar 

  • Buyel JF, Woo JA, Cramer SM et al (2013b) The use of quantitative structure–activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production. J Chromatogr A 1322:18–28

    Google Scholar 

  • Buyel JF, Gruchow HM, Boes A et al (2014) Rational design of a host cell protein heat precipitation step can simplify the subsequent purification of recombinant proteins from tobacco. Biotechnol Bioeng 88:162–170

    CAS  Google Scholar 

  • Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Strasser R, Stadlmann J et al (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox KM, Sterling JD, Regan JT et al (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • D'Aoust MA, Couture MM, Charland N et al (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    Article  PubMed  Google Scholar 

  • D’Aoust MA, Lavoie PO, Couture MM et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940

    Article  PubMed  Google Scholar 

  • EMEA (2002) Committee for Proprietary Medicinal Products (CPMP). Points to consider on quality aspects of medicinal products containing active substances produced by stable transgene expression in higher plants (EMEA/CPMP/BWP/764/02). EMA, London, UK

    Google Scholar 

  • EMEA (2009) Committee for Proprietary Medicinal Products (CPMP). Guideline on the quality of biological active substances produced by stable transgene expression in higher plants (EMEA/CHMP/BWP/48316/2006). EMA, London, UK

    Google Scholar 

  • FDA/USDA (2002) Draft guidance. Drugs, biologics, and medical devices derived from bioengineered plants for use in humans and animals. FDA, Rockville, MD. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM055424.pdf

  • Fischer R, Schillberg S, Hellwig S et al (2012) GMP issues for plant-derived recombinant proteins. Biotechnol Adv 30:434–439

    Article  CAS  PubMed  Google Scholar 

  • Giritch A, Marillonnet S, Engler C et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L et al (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  • Hiatt AH, Caffertey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  CAS  PubMed  Google Scholar 

  • Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502

    Article  CAS  PubMed  Google Scholar 

  • Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283

    Article  CAS  Google Scholar 

  • Hood EE, Witcher DR, Maddock S et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  • Hood EE, Woodard SL, Horn ME (2002) Monoclonal antibody manufacturing in transgenic plants—myths and realities. Curr Opin Biotechnol 13:630–635

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Phoolcharoen W, Lai H et al (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106:9–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2012) Q11. Development and manufacture of drug substances (chemical entities and biotechnological/biological entities). Fed Regist 77:69634–69635

    Google Scholar 

  • Kusnadi AR, Evangelista RL, Hood EE et al (1998) Processing of transgenic corn seed and its effect on the recovery of recombinant β-glucuronidase. Biotechnol Bioeng 60:44–52

    Article  CAS  PubMed  Google Scholar 

  • Lamphear BJ, Streatfield SJ, Jilka JM et al (2002) Delivery of subunit vaccines in maize seed. J Control Release 85:169–180

    Article  CAS  PubMed  Google Scholar 

  • Landry N, Ward BJ, Trepanier S et al (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5:e15559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Menkhaus TJ, Bai Y, Zhang CM et al (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog 20:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Nikolov ZL, Woodard SL (2004) Downstream processing of recombinant proteins from transgenic feedstock. Curr Opin Biotechnol 15:479–486

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Kumamaru T, Satoh H et al (1987) Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol 28:1517–1527

    CAS  Google Scholar 

  • Pandey A, Singh N, Mittal SK (2010) Egg-independent vaccine strategies for highly pathogenic H5N1 influenza viruses. Hum Vaccin 6:178–188

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Teh AY, Twyman RM et al (2013) Target product selection—where can molecular pharming make the difference? Curr Pharm Des 19:5478–5485

    Article  CAS  PubMed  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  CAS  PubMed  Google Scholar 

  • Rademacher T, Sack M, Arcalis E et al (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201

    Article  CAS  PubMed  Google Scholar 

  • Ramessar K, Rademacher T, Sack M et al (2008) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA 105:3727–3732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramessar K, Sabalza M, Miralpeix B et al (2010) Can microbicides turn the tide against HIV? Curr Pharm Des 16:468–485

    Article  CAS  PubMed  Google Scholar 

  • Rappuoli R, Dormitzer PR (2012) Influenza: options to improve pandemic preparation. Science 336:1531–1533

    Article  CAS  PubMed  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schillberg S, Raven N, Fischer R et al (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542

    Article  CAS  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S et al (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Chichester JA, Bi H et al (2008) Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine 26:2930–2934

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Chichester JA, Jones M et al (2011) Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccin 7:41–50

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L et al (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. Plant Cell Rep 30:417–424

    Article  CAS  PubMed  Google Scholar 

  • Spok A, Twyman RM, Fischer R et al (2008) Evolution of a regulatory framework for plant-made pharmaceuticals. Trends Biotechnol 26:506–517

    Article  PubMed  Google Scholar 

  • Sriraman R, Bardor M, Sack M et al (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-α(1,3)-fucose residues. Plant Biotechnol J 2:279–287

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Sack M, Nicholson L et al (2005) Recent progress in plantibody technology. Curr Pharm Des 11:2439–2457

    Article  CAS  PubMed  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streatfield SJ, Lane JR, Brooks CA et al (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Verma PC, Singh PK et al (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  CAS  PubMed  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM et al (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Triguero A, Cabrera G, Cremata JA et al (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J 3:449–457

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    Article  CAS  PubMed  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2013) Optimizing the yield of recombinant pharmaceutical proteins in plants. Curr Pharm Des 19:5486–5494

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Moghimi B, LoDuca PA et al (2010) Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci USA 107:7101–7106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vézina LP, Faye L, Lerouge P et al (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455

    Article  PubMed  Google Scholar 

  • Whaley KJ, Hiatt A, Zeitlin L (2011) Emerging antibody products and Nicotiana manufacturing. Hum Vaccin 7:349–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilken LR, Nikolov ZL (2006) Factors influencing recombinant human lysozyme extraction and cation exchange adsorption. Biotechnol Prog 22:745–752

    Article  CAS  PubMed  Google Scholar 

  • Wilken LR, Nikolov ZL (2010) Evaluation of alternatives for human lysozyme purification from transgenic rice: impact of phytic acid and buffer. Biotechnol Prog 26:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30:419–433

    Article  CAS  PubMed  Google Scholar 

  • Witcher D, Hood EE, Peterson D et al (1998) Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4:301–312

    Article  CAS  Google Scholar 

  • Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals. Vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Xu L, Zhang C et al (2007) Purification of recombinant aprotinin from transgenic corn germ fraction using ion exchange and hydrophobic interaction chromatography. Appl Microbiol Biotechnol 76:607–613

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann J, Saalbach I, Jahn D et al (2009) Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol 9:79

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the EU projects Pharma-Planta (LSHB-CT-2003-503565) and CoMoFarm (227420), the COST Action Molecular Farming (FA0804), and the ERC advanced grant Future-Pharma (269110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, R., Buyel, J.F., Schillberg, S., Twyman, R.M. (2014). Molecular Farming in Plants: The Long Road to the Market. In: Howard, J., Hood, E. (eds) Commercial Plant-Produced Recombinant Protein Products. Biotechnology in Agriculture and Forestry, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43836-7_3

Download citation

Publish with us

Policies and ethics