Commercial Plant-Produced Recombinant Avidin

  • Elizabeth E. Hood
  • John A. Howard
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 68)


Recombinant egg white avidin was the first recombinant protein product manufactured and sold from a plant system. Recombinant avidin is functionally equivalent to chicken avidin, including its binding activity to biotin. This recombinant protein was used to demonstrate that plants cannot only be used to express animal proteins but these could be purified economically to produce a competitive product. Recombinant avidin was also in ground corn meal that was fed to mice to demonstrate that the protein can survive the digestive system and elicit antibodies when orally delivered in the corn matrix. Thus, avidin demonstrated the utility of the plant production system in general as well as its utility as a delivery system for oral vaccines.


Male Sterility Corn Meal Corn Seed Material Safety Data Sheet Material Safety Data Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Airenne KJ, Sarkkinen P, Punnonen E-L, Kulomaa MS (1994) Production of recombinant avidin in Escherichia coli. Gene 144(1):75–80, PubMedCrossRefGoogle Scholar
  2. Airenne KJ, Oker-Blom C, Marjomäki VS, Bayer EA, Wilchek M, Kulomaa MS (1997) Production of biologically active recombinant avidin in baculovirus-infected insect cells. Protein Expr Purif 9(1):100–108, PubMedCrossRefGoogle Scholar
  3. Albertsen MC, Howard JA, Maddock S (1999) Induction of male sterility in plants by expression of high levels of avidin. USA PatentGoogle Scholar
  4. An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3[prime] control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1(1):115–122. doi: 10.1105/tpc.1.1.115 PubMedCentralPubMedGoogle Scholar
  5. Armstrong C, Green C, Phillips R (1991) Development and availability of germplasm with high type II culture formation response. Maize Genet Coop News Lett 65:92–93Google Scholar
  6. Bailey M (2000) A model system for edible vaccination using recombinant avidin produced in corn seed. Texas A&M University, College Station, TXGoogle Scholar
  7. Berger M, Wood HG (1975) Purification of the subunits of transcarboxylase by affinity chromatography on avidin-sepharose. J Biol Chem 250(3):927–933PubMedGoogle Scholar
  8. Burgess EJ, Malone L, Christeller J, Lester M, Murray C, Philip B, Phung M, Tregidga E (2002) Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, helicoverpa armigera and spodoptera litura. Transgenic Res 11(2):185–198PubMedCrossRefGoogle Scholar
  9. Christensen A, Sharrock R, Quail P (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:810–812CrossRefGoogle Scholar
  10. DeLange RJ, Huang TS (1971) Egg white avidin. 3. Sequence of the 78-residue middle cyanogen bromide peptide. Complete amino acid sequence of the protein subunit. J Biol Chem 246(3):698–709PubMedGoogle Scholar
  11. Gope ML, Keinanen RA, Kristo PA, Conneely OM, Beattie WG, Zarucki-Schulz T, O’Malley BW, Kulomaa MS (1987) Molecular cloning of the chicken avidin cDNA. Nucleic Acids Res 15(8):3595–3606PubMedCentralPubMedCrossRefGoogle Scholar
  12. Green NM (1963) Avidin. 3. The nature of the biotin-binding site. Biochem J 89:599–609PubMedCentralPubMedGoogle Scholar
  13. Green NM, Toms EJ (1973) The properties of subunits of avidin coupled to sepharose. Biochem J 133(4):687–700PubMedCentralPubMedGoogle Scholar
  14. Hood EE (2004) Bioindustrial and biopharmaceutical products from plants. In: New directions for a diverse planet: proceedings for the 4th international crop science congress, 26 September–1 October 2004, The Regional Institute Ltd, Brisbane, AustraliaGoogle Scholar
  15. Hood E, Witcher D, Maddock S, Meyer T, Baszczynski C et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extracting, and purification. Mol Breed 3:291–306CrossRefGoogle Scholar
  16. Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1(2):129–140. doi: 10.1046/j.1467-7652.2003.00014.x, PBI014 [pii]PubMedCrossRefGoogle Scholar
  17. Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Requesens DV, Hayden C, Hood KR, Pappu KM, Carroll J, Howard JA (2012) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnol J 10:20–30. doi: 10.1111/j.1467-7652.2011.00627.x PubMedCrossRefGoogle Scholar
  18. Howard JA, Nikolov Z, Hood EE (2011) Enzyme production systems for biomass conversion. In: Hood EE, Nelson P, Powell R (eds) Plant biomass conversion. Wiley, Ames, IA, pp 227–253, CrossRefGoogle Scholar
  19. Keinanen RA, Laukkanen ML, Kulomaa MS (1988) Molecular cloning of three structurally related genes for chicken avidin. J Steroid Biochem 30(1–6):17–21PubMedCrossRefGoogle Scholar
  20. Kramer K, Morgan T, Throne J, Dowell F, Bailey M, Howard J (2000) Transgenic avidin maize is resistant to storage insect pests. Nat Biotechnol 18:670–674PubMedCrossRefGoogle Scholar
  21. Kusnadi AR, Hood EE, Witcher DR, Howard JA, Nikolov ZL (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14(1):149–155PubMedCrossRefGoogle Scholar
  22. Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63(24):2992–3017. doi: 10.1007/s00018-006-6288-z PubMedCrossRefGoogle Scholar
  23. Lichtfouse E, Martin H, Burgess EJ, Masarik M, Kramer K, Beklova M, Adam V, Kizek R (2010) Avidin and plant biotechnology to control pests. In: Engineering G (ed) Biofertilisation, soil quality and organic farming, vol 4, Sustainable agriculture reviews. Springer, Netherlands, pp 1–21CrossRefGoogle Scholar
  24. Livnah O, Bayer EA, Wilchek M, Sussman JL (1993) Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci USA 90(11):5076–5080PubMedCentralPubMedCrossRefGoogle Scholar
  25. Markwick N, Docherty L, Phung M, Lester M, Murray C, Yao J-L, Mitra D, Cohen D, Beuning L, Kutty-Amma S, Christeller J (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple moth, respectively. Transgenic Res 12(6):671–681PubMedCrossRefGoogle Scholar
  26. Masarik M, Kizek R, Kramer K, Billova S, Brazdova M, Vacek J, Baley M, Jelen F, Howard J (2003) Application of avidin-biotin technology transfer stripping square-wave voltammetry for detection of DNA hybridization and avidin in transgenic avidin maize. Anal Chem 75:2663–2669PubMedCrossRefGoogle Scholar
  27. Murray C, Sutherland P, Phung M, Lester M, Marshall R, Christeller J (2002) Expression of biotin-binding proteins, avidin and streptavidin, in plant tissues using plant vacuolar targeting sequences. Transgenic Res 11(2):199–214PubMedCrossRefGoogle Scholar
  28. Murray C, Markwick N, Kaji R, Poulton J, Martin H, Christeller J (2010) Expression of various biotin-binding proteins in transgenic tobacco confers resistance to potato tuber moth, Phthorimaea operculella (Zeller) (fam. Gelechiidae). Transgenic Res 19(6):1041–1051PubMedCrossRefGoogle Scholar
  29. Rogers JC (1985) Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260(6):3731–3738PubMedGoogle Scholar
  30. Streatfield S (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15PubMedCrossRefGoogle Scholar
  31. Streatfield S, Mayor J, Barker D, Brooks C, Lamphear B, Woodard S, Beifuss K, Vicuna D, Massey L, Horn M, Delaney D, Nikolov Z, Hood E, Jilka J, Howard J (2002) Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. In Vitro Cell Dev Biol Plant 38(1):11–17. doi: 10.1079/ivp2001247 CrossRefGoogle Scholar
  32. Teoh KT, Requesens DV, Devaiah SP, Johnson D, Huang X, Howard JA, Hood EE (2013) Transcriptome analysis of embryo maturation in maize. BMC Plant Biol 13(1):19PubMedCentralPubMedCrossRefGoogle Scholar
  33. Thompson RC, Eakin RE, Williams RJ (1941) The extraction of biotin from tissues. Science 94(2451):589–590. doi: 10.1126/science.94.2451.589 PubMedCrossRefGoogle Scholar
  34. Wallen MJ, Laukkanen MO, Kulomaa MS (1995) Cloning and sequencing of the chicken egg-white avidin-encoding gene and its relationship with the avidin-related genes Avr1-Avr5. Gene 161(2):205–209PubMedCrossRefGoogle Scholar
  35. White J, Chang SY, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062PubMedCentralPubMedCrossRefGoogle Scholar
  36. Woodard S, Mayor J, Bailey M, Barker D, Love R, Lane J, Delaney D, McComas-Wagner J, Mallubhotla H, Hood E (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38(2):123–130PubMedCrossRefGoogle Scholar
  37. Zocchi A, Marya Jobé A, Neuhaus J-M, Ward TR (2003) Expression and purification of a recombinant avidin with a lowered isoelectric point in Pichia pastoris. Protein Expr Purif 32(2):167–174, PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Arkansas Biosciences InstituteArkansas State UniversityJonesboroUSA
  2. 2.Applied Biotechnology InstituteSan Luis ObispoUSA

Personalised recommendations