Differentiation

Chapter

Zusammenfassung

Mit der Differentiation treffen wir nun auf den Kern der Analysis. Die meisten Funktionen der Ingenieurmathematik sind nicht nur stetig, sie sind sogar differenzierbar. Mit dieser Differentiation erschließt sich nun die Möglichkeit, Extrema solcher Funktionen zu bestimmen. Das ist die wesentliche Anwendung dieser Theorie. Aber auch das Monotonieverhalten von Funktionen lässt sich mit dieser Theorie beurteilen, und nicht zuletzt können wir bei differenzierbaren Funktionen auch oft die Nullstellen mit einem effizienten Verfahren bestimmen.

Aber bevor wir auf diese zahlreichen Anwendungen der Differentiation zu sprechen kommen, müssen wir kurz erläutern, wie man sich diese vorstellen kann und welche Regeln für das Differenzieren gelten. Viele dieser Regeln kennt man aus der Schulzeit, manche werden aber auch neu sein. Wir geben einen Überblick über diese Regeln und runden dieses Kapitel mit zahlreichen, sicher auch verblüffenden Beispielen ab.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MünchenDeutschland

Personalised recommendations