Advertisement

Orthogonalität I

Chapter

Zusammenfassung

Hat ein Vektorraum ein Skalarprodukt, so kann man jedem Vektor dieses Vektorraums eine Länge und je zwei Vektoren einen Abstand bzw. einen dazwischenliegenden Winkel zuordnen und auch hinterfragen, ob zwei Vektoren orthogonal sind. Dabei ist ein Skalarprodukt ein Produkt von Vektoren, wobei das Resultat ein Skalar ist.

So anschaulich diese Begriffe auch sein mögen, so wenig anschaulich werden viele Inhalte des vorliegenden Kapitels sein: Wir betrachten nämlich auch Vektorräume ungleich dem \({\mathbb{R}}^{2}\) oder \({\mathbb{R}}^{3}\), also etwa den Vektorraum aller stetigen Funktionen auf einem Intervall \([a,b]\). Orthogonalität, Winkel und Abstände sind dann nicht durch die Anschauung gegeben, sondern ergeben sich durch Auswerten von Formeln. Dieser Abstraktionsschritt, einfach nur Formeln anzuwenden und dabei jede Anschauung zu unterdrücken, fällt Studienanfängern üblicherweise schwer, wenngleich es so einfach klingt. Dieser Abstraktionsschritt ist aber wichtig, wir werden in späteren Kapiteln auf die hier angesprochenen Sachverhalte zurückkommen.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MünchenDeutschland

Personalised recommendations