Skip to main content

Computing Popov Forms of Matrices Over PBW Extensions

  • Conference paper
  • First Online:
Computer Mathematics

Abstract

In this paper we define the Popov and weak Popov forms of matrices over Poincaré–Birkhoff–Witt (PBW) extensions, and exhibit effective algorithms to find them. As applications we give general methods to calculate the ranks of such matrices, and a method to transfer a system of differential equations into a first order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popov, V.M.: Invariant description of linear, time-invariant controllable systems. SIAM J. Control 10(2), 252–264 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kailath, T.: Linear Systems. Prentice Hall, Upper Saddle River (1980)

    MATH  Google Scholar 

  3. Villard. G.: Computing Popov and Hermite forms of polynomial matrices. In: Proceedings of ISSAC’96, pp. 250–258. ACM Press (1996)

    Google Scholar 

  4. Beckermann, B., Labahn, G., Villard, G.: Shifted normal forms of polynomial matrices. In: Proceedings of ISSAC’99, pp. 189–196. ACM Press (1999)

    Google Scholar 

  5. Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. J. Symb. Comput. 35, 377–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(22), 480–508 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jacobson, N.: The Theory of Rings. American Math. Soc, New York (1943)

    Book  MATH  Google Scholar 

  8. Jacobson, N.: Finite-Dimensional Division Algebras over Fields. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  9. Cohn, P.M.: Skew Fields. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  10. Abramov, S., Bronstein, M.: Linear algebra for skew-polynomial matrices. Technical Report 4420, INRIA. INRIA Rapport de Recherche (2002)

    Google Scholar 

  11. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of ore polynomials. J. Symb. Comput. 41(5), 513–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giesbrecht, M., Labahn, G., Zhang, Y.: Computing valuation Popov forms. In: Proceedings of CASA’2005, Lecture Notes on Computer Science 3516, pp. 619–626. Springer (2005)

    Google Scholar 

  13. Davies, P., Cheng, H., Labahn, G.: Computing Popov Form of General Ore Polynomial Matrices. In: Milestones in Computer, Algebra, pp. 149–156 (2008)

    Google Scholar 

  14. Giesbrecht, M., Kim, M.: On Computing the Hermite Form of a Matrix of Differential Polynomials. In: Proceedings of CASC’09. (2009)

    Google Scholar 

  15. Bose, N.K.: Multidimensional Systems Theory. D. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  16. Park, H.: Symbolic computation and signal processing. J. Symb. Comput. 37, 209–226 (2004)

    Article  MATH  Google Scholar 

  17. Youla, D.C., Pickel, P.F.: The Quillen-Suslin theorem and the structure of \(n\)-dimemsional elementary polynomial matrices. IEEE Trans. Circuits Syst. 31, 513–518 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zerz, E.: Topics in Multidimensional Linear Systems Theory. Lecture notes in control and information sciences. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Hillebrand, A., Schmale, W.: Towards an effective version of a theorem of Stafford. J. Symb. Comput. 32, 699–716 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Finkel, F., Kamran, N.: On the equivalence of matrix differential operators to Schrödinger form. Nonlinear Math. Phys. 4(3–4), 278–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bell, A.D., Goodearl, K.R.: Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extension. Pac. J. Math. 131(1), 13–37 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giesbrecht, M., Reid, G., Zhang, Y.: Non-commutative Gröbner Bases in Poincaré–Birkhoff–Witt extensions. In: Proceedings of Conference on Computer Algebra and Scientific Computation (CASC’02), pp. 97–106 (2002)

    Google Scholar 

Download references

Acknowledgments

All the authors would like to thank NSERC Canada for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Giesbrecht , George Labahn or Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesbrecht, M., Labahn, G., Zhang, Y. (2014). Computing Popov Forms of Matrices Over PBW Extensions. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_6

Download citation

Publish with us

Policies and ethics