Skip to main content

High-Precision Eigenvalue Bound for the Laplacian with Singularities

  • Conference paper
  • First Online:
Computer Mathematics

Abstract

For the purpose of bounding eigenvalues of the Laplacian over a bounded polygonal domain, we propose an algorithm to give high-precision bound even in the case that the eigenfunction has singularities around reentrant corners. The algorithm is a combination of the finite element method and the Lehmann–Goerisch theorem. The interval arithmetic is adopted in floating point number computation. Since all the error in the computation, e.g., the function approximation error, the floating point number rounding error, are exactly estimated, the result can be mathematically correct. In the end of the chapter, there are computational examples over an L-shaped domain and a square-minus-square domain that demonstrate the efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behnke, H.: The calculation of guaranteed bounds for eigenvalues using complementary variational principles. Computing 47, 11–27 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behnke, H., Goerisch, F.: Inclusions for eigenvalues of selfadjoint problems. Topics in Validated Computations, pp. 277–322. Elsevier, Amsterdam (1994)

    Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  4. Chen, C.-Y.: On the properties of sard kernels and multiple error estimates for bounded linear functionals of bivariate functions with application to non-product cubature. Numerische Mathematik 122, 603–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dautray, R., Lions, J., Artola, M., Cessenat, M.: Mathematical Analysis and Numerical Methods for Science and Technology: Spectral Theory and Applications. Springer, Heidelberg (2000)

    Book  Google Scholar 

  6. Goerisch, F.: Ein stufenverfahren zur berechnung von eigenwertschranken, in Numerical Treatment of Eigenvalue Problems, Vol. 4. In: Albrecht, J., Collatz, L., Velte, W., Wunderlich, W. (eds.) International Series of Numerical Mathematics, vol. 83, pp. 104–114. Birkhäuser, Basel (1987)

    Google Scholar 

  7. Goerisch, F., He, Z.: The determination of guaranteed bounds to eigenvalues with the use of variational methods I. Computer Arithmetic and Self-validating Numerical Methods, pp. 137–153. Academic Press Professional Inc, San Diego (1990)

    Chapter  Google Scholar 

  8. Lehmann, N.: Optimale Eigenwerteinschließungen. Numer. Math. 5, 246–272 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, X., Kikuchi, F.: Analysis and estimation of error constants for interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17, 27–78 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. NUMER. ANAL. 51, 1634–1654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mason, J.: Chebyshev polynomial approximations for the l-membrane eigenvalue problem. SIAM J. Appl. Math. 15, 172–186 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mathematica, Ver. 9.0, Wolfram Research Inc, Champaign, IL (2013)

    Google Scholar 

  13. Plum, M.: Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 41, 205–226 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Plum, M.: Guaranteed numerical bounds for eigenvalues. In: Hinton, D., Schaefer, P. (eds.) Spectral Theory and Computational Methods of Sturm, pp. 313–332. Marcel Dekker, New York (1997)

    Google Scholar 

  15. Plum, M., Wieners, C.: New solutions of the Gelfand problem. J. Math. Anal. Appl. 269, 588–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rump, S.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/

  17. Still, G.: Approximation theory methods for solving elliptic eigenvalue problems. ZAMM Z. Angew. Math. Mech. 83, 468–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuan, Q., He, Z.: Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods. J. Comput. Appl. Math. 233, 1083–1090 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author of this chapter is supported by Japan Society for the Promotion of Science, Grand-in-Aid for Young Scientist (B) 23740092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X., Okayama, T., Oishi, S. (2014). High-Precision Eigenvalue Bound for the Laplacian with Singularities. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_23

Download citation

Publish with us

Policies and ethics