Skip to main content

Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise and Outliers in the Evaluations

  • Conference paper
  • First Online:
Computer Mathematics

Abstract

We compute approximate sparse polynomial models of the form \(\widetilde{f}(x) = \sum _{j=1}^t \widetilde{c}_j (x - \widetilde{s})^{e_j}\) to a function \(f(x)\), of which an approximation of the evaluation \(f(\zeta )\) at any complex argument value \(\zeta \) can be obtained. We assume that several of the returned function evaluations \(f(\zeta )\) are perturbed not just by approximation/noise errors but also by highly perturbed outliers. None of the \(\widetilde{c}_j\), \(\widetilde{s}\), \(e_j\) and the location of the outliers are known beforehand. We use a numerical version of an exact algorithm by [4] together with a numerical version of the Reed–Solomon error correcting coding algorithm. We also compare with a simpler approach based on root finding of derivatives, while restricted to characteristic \(0\). In this preliminary report, we discuss how some of the problems of numerical instability and ill-conditioning in the arising optimization problems can be overcome. By way of experiments, we show that our techniques can recover approximate sparse shifted polynomial models, provided that there are few terms \(t\), few outliers and that the sparse shift is relatively small.

This material is based on work supported in part by the National Science Foundation under Grants CCF-0830347 and CCF-1115772.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 301–309. ACM Press, New York (1988)

    Google Scholar 

  2. Brezinski, C.: Computational Aspects of Linear Control. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  3. Comer, M.T., Kaltofen, E.L., Pernet, C.: Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values. In: van der Hoeven, J., van Hoeij, M. (eds.) ISSAC 2012 Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 138–145. Association for Computing Machinery, New York (2012). http://www.math.ncsu.edu/~kaltofen/

  4. Giesbrecht, M., Kaltofen, E., Lee, W.: Algorithms for computing sparsest shifts of polynomials in power, Chebychev, and Pochhammer bases. J. Symb. Comput. 36(3–4), 401–424 (2003). (Special issue International Symposium on Symbolic and Algebraic Computation (ISSAC 2002). Guest editors: Giusti, M., Pardo, L.M. http://www.math.ncsu.edu/~kaltofen/

  5. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate polynomials (extended abstract). In: Proceedings of the Ninth Rhine Workshop on Computer Algebra (RWCA’04), pp. 127–139. University of Nijmegen, The Netherlands (2004)

    Google Scholar 

  6. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate polynomials. In: Dumas, J.G. (ed.) ISSAC MMVI Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, pp. 116–123. ACM Press, New York (2006). doi: http://doi.acm.org/10.1145/1145768.1145792

  7. Giesbrecht, M., Labahn, G., Lee, W.: Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44, 943–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In: A. Leykin (ed.) Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation ISSAC 2011, pp. 123–130. Association for Computing Machinery, New York (2011)

    Google Scholar 

  9. Grigoriev, D.Y., Karpinski, M.: A zero-test and an interpolation algorithm for the shifted sparse polynomials. In: Proceedings of the AAECC-10, Lecture Notes in Computer Science, vol. 673, pp. 162–169. Springer, Heidelberg, Germany (1993)

    Google Scholar 

  10. Grigoriev, D.Y., Lakshman, Y.N.: Algorithms for computing sparse shifts for multivariate polynomials. Applic. Algebra Engin. Commun. Comput. 11(1), 43–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutton, S.E., Kaltofen, E.L., Zhi, L.: Computing the radius of positive semidefiniteness of a multivariate real polynomial via a dual of Seidenberg’s method. In: Watt [19], pp. 227–234. http://www.math.ncsu.edu/~kaltofen/

  12. Kaltofen, E., Lakshman Y. N., Wiley, J.M.: Modular rational sparse multivariate polynomial interpolation. In: Watanabe, S., Nagata, M. (eds.) Proceedings of the 1990 International Symposium on Symbolic and Algebraic Computation (ISSAC’90), pp. 135–139. ACM Press (1990). http://www.math.ncsu.edu/~kaltofen/

  13. Kaltofen, E., Lee, W.: Early termination in sparse interpolation algorithms. J. Symb. Comput. 36(3–4), 365–400 (2003). (Special issue International Symposium on Symbolic and Algebraic Computation (ISSAC 2002). Guest editors: Giusti, M., Pardo, L.M. http://www.math.ncsu.edu/~kaltofen/

  14. Kaltofen, E., Yang, Z., Zhi, L.: On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms. In: Verschelde, J., Watt, S.M. (eds.) SNC’07 Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, pp. 11–17. ACM Press, New York, (2007). http://www.math.ncsu.edu/~kaltofen/

  15. Khonji, M., Pernet, C., Roch, J.L., Roche, T., Stalinsky, T.: Output-sensitive decoding for redundant residue systems. In: Watt [19], pp. 265–272

    Google Scholar 

  16. Lakshman, Y.N., Saunders, B.D.: Sparse polynomial interpolation in non-standard bases. SIAM J. Comput. 24(2), 387–397 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lakshman, Y.N., Saunders, B.D.: Sparse shifts for univariate polynomials. Applic. Algebra Engin. Commun. Comput. 7(5), 351–364 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prony, R.: Essai expérimental et analytique sur les lois de la Dilatabilité de fluides élastiques et sur celles de la Force expansive de la vapeur de l’eau et de la vapeur de l’alcool, à différentes températures. J. de l’École Polytechnique 1, 24–76 (1795). R. Prony is Gaspard(-Clair-François-Marie) Riche, baron de Prony

    Google Scholar 

  19. Watt, S.M. (ed.): Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation ISSAC 2010. Association for Computing Machinery, New York (2010)

    Google Scholar 

  20. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comput. 9(3), 375–403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew T. Comer or Erich L. Kaltofen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyer, B., Comer, M.T., Kaltofen, E.L. (2014). Sparse Polynomial Interpolation by Variable Shift in the Presence of Noise and Outliers in the Evaluations. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_16

Download citation

Publish with us

Policies and ethics