Fast and Stable Deformations Using the Mesh Intersection Algorithm

  • Luis F. Gutiérrez
  • Sergio Vargas
  • Félix Ramos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8490)


In this research, the stability problem of explicit integration schemes in simulations of deformable objects is addressed. We present a method that makes it possible to simulate a volumetric mesh using the magnitude order of the limit time step provided by another optimal mesh. The volumetric object to simulate, represented by a surface mesh (made up of triangles), is extracted from an optimal volumetric mesh (e.g. a tetrahedralized cube). The optimal mesh is easily tetrahedralized and thus the overall quality can rarely be surpassed. The simulation of the intersection can be performed in a stable manner using the eXtended Finite Element Method (XFEM) which introduces discontinuities (e.g. cutting and dissection) while it maintains the original mesh configuration. The elements (tetrahedra) are classified and those that lie outside the surface mesh are fixed and neglected in the simulation. Interface elements (those that lie inside and outside the surface mesh) are dissected and only the volume part lying inside the surface mesh is simulated. The intersection is performed only once before starting the simulation. Using our approach, the meshing methods and mesh optimization strategies are avoided. Furthermore, our approach can be directly switched to implicit solvers. The proposed method is useful for designing simulations of deformable objects without meshing techniques.


Surface Mesh Interface Element Deformable Object Explicit Integration Optimal Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shewchuk, J.R.: What is a good linear element? interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126. Springer (2002)Google Scholar
  2. 2.
    Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface 2004, GI 2004, pp. 239–246 (2004)Google Scholar
  3. 3.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. SIGGRAPH Comput. Graph. 21(4), 205–214 (1987), CrossRefGoogle Scholar
  4. 4.
    Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006), CrossRefMATHGoogle Scholar
  5. 5.
    Wicke, M., Botsch, M., Gross, M.: A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26(3), 355–364 (2007)CrossRefGoogle Scholar
  6. 6.
    Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27(5), 1521–1529 (2008)CrossRefGoogle Scholar
  7. 7.
    Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., Guibas, L.J.: Meshless modeling of deformable shapes and their motion. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2008, pp. 77–86. Eurographics Association, Aire-la-Ville (2008), Google Scholar
  8. 8.
    Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30(4), 73:1–73:10 (2011),
  9. 9.
    Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25(4), 809–836 (2006)CrossRefGoogle Scholar
  10. 10.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005), CrossRefGoogle Scholar
  11. 11.
    Fierz, B., Spillmann, J., Hoyos, I.A., Harders, M.: Maintaining large time steps in explicit finite element simulations using shape matching. IEEE Transactions on Visualization and Computer Graphics 18(5), 717–728 (2012)CrossRefGoogle Scholar
  12. 12.
    Fierz, B., Spillmann, J., Harders, M.: Element-wise mixed implicit-explicit integration for stable dynamic simulation of deformable objects. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2001, pp. 257–266. ACM, New York (2011), Google Scholar
  13. 13.
    Aguinaga, I., Fierz, B., Spillmann, J., Harders, M.: Filtering of high modal frequencies for stable real-time explicit integration of deformable objects using the finite element method. Progress in Biophysics and Molecular Biology 103(2-3), 225–235 (2010)CrossRefGoogle Scholar
  14. 14.
    Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of deformable objects by filtering high modal frequencies. Journal of WSCG 18(1-3), 81–88 (2010)Google Scholar
  15. 15.
    Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Progress in Biophysics and Molecular Biology 103(2), 159–168 (2010)CrossRefGoogle Scholar
  16. 16.
    Klingner, B.: Tetrahedral mesh improvement. Ph.D. dissertation, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California (2008)Google Scholar
  17. 17.
    Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE Virtual Reality, pp. 35–42 (2006)Google Scholar
  18. 18.
    Shewchuk, J.R.: Two discrete optimization algorithms for the topological improvement of tetrahedral meshes. Unpublished manuscript (2002),
  19. 19.
    Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improvement using swapping and smoothing. International Journal for Numerical Methods in Engineering 40(21), 3979–4002 (1997)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Klingner, B., Shewchuk, J.: Aggressive tetrahedral mesh improvement. In: Proc. of the 16th International Meshing Roundtable, pp. 3–23 (2007)Google Scholar
  21. 21.
    Wicke, M., Ritchie, D., Klingner, B.: Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics (TOG) 29(4), 1–11 (2010)CrossRefGoogle Scholar
  22. 22.
    Gutiérrez, L.F., Aguinaga, I., Fierz, B., Ramos, F., Harders, M.: Pitting a new hybrid approach for maintaining simulation stability after mesh cutting against standard remeshing strategies. In: Proceedings of Computer Graphics International (June 2011)Google Scholar
  23. 23.
    Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and Feature-Preserving Subdivision for High-Quality Tetrahedral Meshes. Computer Graphics Forum 29(1), 117–127 (2010)CrossRefGoogle Scholar
  24. 24.
    Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28(3), 52:1–52:9 (2009),
  25. 25.
    Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28(3), 50:1–50:10 (2009),
  26. 26.
    Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Graph. Appl. 29(2), 61–71 (2009)CrossRefGoogle Scholar
  27. 27.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph (SIGGRAPH Proc.) 23, 385–392 (2004)CrossRefGoogle Scholar
  28. 28.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen 100(1), 32–74 (1928)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Babuska, I., Melenk, J.M.: The partition of unity method. International Journal of Numerical Methods in Engineering 40, 727–758 (1997)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Gutiérrez, L.F., Ramos, F.: Xfem framework for cutting soft tissue - including topological changes in a surgery simulation. In: GRAPP 2010, pp. 275–283 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luis F. Gutiérrez
    • 2
  • Sergio Vargas
    • 1
  • Félix Ramos
    • 1
  1. 1.CINVESTAV Campus GuadalajaraMexico
  2. 2.Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO)Mexico

Personalised recommendations