Skip to main content

Synchronization of Chaotic and Stochastic Neurons Using Differential Flatness Theory

  • Chapter
  • First Online:
  • 2476 Accesses

Abstract

This chapter presents a control method for neuron models that have the dynamics of chaotic oscillators. The proposed chaotic control method makes use of a linearized model of the chaotic oscillator which is obtained after transforming the oscillators dynamic model into a linear canonical form through the application of differential flatness theory . The chapter also analyzes a synchronizing control method (flatness-based control) for stochastic neuron models which are equivalent to particle systems and which can be modeled as coupled stochastic oscillators. It is explained that the kinematic model of the particles can be derived from the model of the quantum harmonic oscillator (QHO) . It is shown that the kinematic model of the particles is a differentially flat system. It is also shown that after applying flatness-based control the mean of the particle system can be steered along a desirable path with infinite accuracy, while each individual particle can track the trajectory within acceptable accuracy levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.D. Armani, S.V. Chaudhary, P. Probst, B. Shapiro, Using feedback control of microflows to independently steer multiple particles. IEEE J. Microelectromech. Syst. 15(4), 945–956 (2006)

    Article  Google Scholar 

  2. C. Chaudhary, B. Shapiro, Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system. IEEE J. Control Syst. Technol. 14(4), 669–680 (2006)

    Article  Google Scholar 

  3. F. Comet, T. Meyre, Calcul stochastique et modèles de diffusion (Dunod, Paris, 2006)

    Google Scholar 

  4. P.S.P. da Silva, P. Rouchon, Flatness-based control of a single qubit-gate. IEEE Trans. Automat. Control 53(3), 775–779 (2008)

    Article  MathSciNet  Google Scholar 

  5. W.G. Faris, Diffusion, Quantum Theory, and Radically Elementary Mathematics (Princeton University Press, Princeton, 2006)

    MATH  Google Scholar 

  6. M. Fliess, Probabilités et fluctuations quantiques. Comp. Rendus Math. (Phys. Math.), C. R. Acad. Sci. Paris 344, 663–668 (2007)

    Google Scholar 

  7. M. Fliess, H. Mounier, Tracking control and π-freeness of infinite dimensional linear systems, in Dynamical Systems, Control, Coding and Computer Vision, vol. 258, ed. by G. Picci, D.S. Gilliam (Birkhaüser, Boston, 1999), pp. 41–68

    Google Scholar 

  8. H. Fujii and I. Tsuda, Neocortical gap junction coupled interneuron systems may induce chaotic behavior itinerant among quasi-attractors exhibiting transient synchrony. Neurocomputing 58–60, 151–157 (2004)

    Article  MathSciNet  Google Scholar 

  9. V. Gazi, K. Passino, Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. B Cybern. 34, 539–557 (2004)

    Article  Google Scholar 

  10. M. Gitterman, The Noisy Oscillator: The First Hundred Years, From Einstein Until Now (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  11. H. Khalil, Nonlinear Systems (Prentice Hall, Englewood Cliffs, 1996)

    Google Scholar 

  12. B. Laroche, D. Claude, Flatness-based control of PER protein oscillations in a Drosophila model. IEEE Trans. Automat. Contr. 49(2), 175–183 (2004)

    Article  MathSciNet  Google Scholar 

  13. J. Lévine, D.V. Nguyen, Flat output characterization for linear systems using polynomial matrices. Syst. Control Lett. 48, 69–75 (2003)

    Article  MATH  Google Scholar 

  14. M. Mirrahimi, P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control. 45(5), 745–747 (2004)

    Article  MathSciNet  Google Scholar 

  15. H. Mounier, J. Rudolph, Trajectory tracking for π-flat nonlinear dealy systems with a motor example, in Nonlinear Control in the Year 2000, vol. 1, ed. by A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek. Lecture Notes in Control and Information Sciences, vol. 258 (Springer, London, 2001), pp. 339–352

    Google Scholar 

  16. G.G. Rigatos, Coordinated motion of autonomous vehicles with the use of a distributed gradient algorithm. Appl. Math. Comput. 199, 494–503 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. G.G. Rigatos, Distributed gradient and particle swarm optimization for multi-robot motion planning. Robotica 26(3), 357–370 (2008)

    Article  Google Scholar 

  18. G.G. Rigatos, Open-loop control of particle systems based on a model of coupled stochastic oscillators, in ICQNM 2009 International Conference on Quantum Micro and Nano Technologies, Mexico, 2009

    Google Scholar 

  19. P. Rouchon, Flatness-based control of oscillators. ZAMM Zeitschr. Angew. Math. Mech. 85(6), 411–421 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Srebro, The Duffing oscillator: a model for the dynamics of the neuronal groups comprising the transient evoked potential. Electroengephalongr. Clin. Neurophysiol. 96, 561–573 (1995)

    Article  Google Scholar 

  21. N.J. Stevenson, M. Mesbah, G.B. Poylan, P.B. Colditz, B. Boushash, A nonlinear model of newborn EEG with non-stationary inputs. Ann. Biomed. Eng. 38(9), 3010–3021 (2010)

    Article  Google Scholar 

  22. D.Q. Wei, X.S. Luo, B. Zhang, Y.H. Qin, Controlling chaos in space-clamped FitzHugh–Nagumo neuron by adaptive passive method. Nonlinear Anal. Real World Appl. 11, 1752–1759 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. X. Xu, H.Y. Hu, H.L. Wang, Stability switches, Hopf bifurcations and chaos of a neuron model with delay dependent parameters. Phys. Lett. A 354, 126–136 (2006)

    Google Scholar 

  24. X.S. Yang, Y. Huang, Complex dynamics in simple Hopfield networks. AIP Chaos 16, 033114 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigatos, G.G. (2015). Synchronization of Chaotic and Stochastic Neurons Using Differential Flatness Theory. In: Advanced Models of Neural Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43764-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43764-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43763-6

  • Online ISBN: 978-3-662-43764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics