Skip to main content

Oscillatory Dynamics in Biological Neurons

  • Chapter
  • First Online:
Advanced Models of Neural Networks
  • 2490 Accesses

Abstract

The voltage of the neurons membrane exhibits oscillatory variations after receiving suitable external excitation either when the neuron is independent from neighboring neural cells or when the neuron is coupled to neighboring neural cells through synapses or gap junctions. In the latter case it is significant to analyze conditions under which synchronization between coupled neural oscillators takes place, which means that the neurons generate the same voltage variation pattern possibly subject to a phase difference. The loss of synchronism between neurons can cause several neurodegenerative disorders. Moreover, it can affect several basic functions of the body such as gait, respiration, and heart’s rhythm. For this reason synchronization of coupled neural oscillators has become a topic of significant research during the last years. The associated results have been also used in several engineering applications, such as biomedical engineering and robotics. For example, synchronization between neural cells can result in a rhythm generator that controls joints motion in quadruped, multi-legged, and biped robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Adeli, S. Sumonway Ghosh-Dastidar, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  2. M. Aqil, K.S. Hong, M.Y. Jeong, Synchronization of coupled chaotic FitzHugh–Nagumo systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1615–1627 (2012)

    Article  MathSciNet  Google Scholar 

  3. B. Ambrosio, M.A. Aziz-Alaoui, Synchronization and control of coupled reaction diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl. 64, 934–943 (2012)

    Article  Google Scholar 

  4. P. Arena, L. Fortuna, M. Frasca, G. Sicurella, An adaptive self-organizing dynamical system for hierarchical control of bio-inspired locomotion. IEEE Trans. Syst. Man Cybern. B 34(4), 1823–1837 (2004)

    Article  Google Scholar 

  5. G. Baird Emertrout, D.H. Terman, Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol. 35 (Springer, New York, 2009)

    Google Scholar 

  6. S. Bououden, D. Boutat, G. Zheng, J.P. Barbot, F. Kratz, A triangular canonical form for a class of 0-flat nonlinear systems. Int. J. Control 84(2), 261–269 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. P.C. Bresslof, J.M. Newby, Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013)

    Article  Google Scholar 

  8. A. Crespi, A. Ijspeert, Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008)

    Article  Google Scholar 

  9. M.J. Denham, Characterising neural representation in terms of the dynamics of cell membrane potential activity: a control theoretic approach using differential geometry. Biosystems 79, 53–60 (2005)

    Article  Google Scholar 

  10. R.O. Dorak, Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields. Chaos Solitons Fract. 52, 66–72 (2013)

    Article  Google Scholar 

  11. M. Fliess, H. Mounier, Tracking control and Ï€-freeness of infinite dimensional linear systems, in Dynamical Systems, Control, Coding and Computer Vision, vol. 258, ed. by G. Picci, D.S. Gilliam (BirkhaĂ¼ser, Boston, 1999), pp. 41–68

    Google Scholar 

  12. Y. Fukuoka, H. Kimura, A. Cohen, Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 3–4, 187–202 (2003)

    Article  Google Scholar 

  13. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Simple Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  14. S. Grillner, Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006)

    Article  Google Scholar 

  15. M. Havlicek, K.J. Friston, J. Jan, M. Brazdil, V.D. Calhoun. Dynamic modeling of neuronal responses in fMRI using cubature Kalman Filtering. Neuroimage 56, 2109–2128 (2011)

    Article  Google Scholar 

  16. R. Héliot, B. Espiau, Multisensor input for CPG-based sensory-motor coordination. IEEE Trans. Robot. 24, 191–195 (2008)

    Article  Google Scholar 

  17. A.J. Ijspeert, Central pattern generator for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)

    Article  Google Scholar 

  18. B.S. Jackson, Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of the cortical neurons. Neural Comput. 16, 2125–2195 (2004)

    Article  MATH  Google Scholar 

  19. K. Kushima, Y. Kawamura, J. Imura, Oscillation analysis of coupled piecewise affine systems: Application to spatio-temporal neuron dynamics. Automatica 47, 1249–1254 (2011)

    Article  Google Scholar 

  20. M. Lankarany, W.P. Zhu, M.N.S. Swamy, Parameter estimation of Hodgkin-Huxley neuronal model using the dual Extended Kalman Filter, in IEEE ISCAS 2013 International Symposium on Circuits and Systems, Beijing, 2013

    Google Scholar 

  21. B. Laroche, P. Martin, N. Petit, Commande par platitude: Equations différentielles ordinaires et aux derivées partielles (Ecole Nationale Supérieure des Techniques Avancées, Paris, 2007)

    Google Scholar 

  22. J. Lévine, On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011)

    Article  MATH  Google Scholar 

  23. Ph. Martin, P. Rouchon, Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes, Mai (1999)

    Google Scholar 

  24. L.H. Nguyen, K.S. Hong, Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions. Math. Comput. Simul. 82, 590–603 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Paninski, Fast Kalman filtering on quasilinear dendritic trees. J. Comput. Neurosci. 28(2), 211–228 (2010)

    Article  MathSciNet  Google Scholar 

  26. M. Rehan, K.S. Hong, M. Aqil, Synchronization of multiple chaotic FitzHugh–Nagumo neurons with gap junctions under external electrical stimulation. Neurocomputing 74, 3296–3304 (2011)

    Article  Google Scholar 

  27. G.G. Rigatos, Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotcs and Industrial Engineering (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  28. G.G. Rigatos, A derivative-free Kalman Filtering approach to state estimation-based control of nonlinear dynamical systems. IEEE Trans. Ind. Electron. 59(10), 3987–3997 (2012)

    Article  Google Scholar 

  29. G.G. Rigatos, Nonlinear Kalman Filters and Particle Filters for integrated navigation of unmanned aerial vehicles. Robot. Auton. Syst. 60, 978–995 (2012)

    Article  Google Scholar 

  30. G. Rigatos, E. Rigatou, A Kalman Filtering approach to robust synchronization of coupled neural oscilltors, in ICNAAM 2013, 11th International Conference on Numerical Analysis and Applied Mathematics, Rhodes, 2013

    Google Scholar 

  31. G.G. Rigatos, S.G. Tzafestas, Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Comput. Model. Dyn. Syst. 13, 251–266 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Rigatos, Q. Zhang, Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)

    Article  MathSciNet  Google Scholar 

  33. G. Rigatos, P. Siano, N. Zervos, PMSG sensorless control with the use of the Derivative-free nonlinear Kalman Filter, in IEEE ICCEP 2013, IEEE International Conference on Clean Electrical Power, Alghero, 2013

    Google Scholar 

  34. P. Rouchon, Flatness-based control of oscillators. ZAMM Zeitschr. Angew. Math. Mech. 85(6), 411–421 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Rudolph, Flatness Based Control of Distributed Parameter Systems. Steuerungs- und Regelungstechnik (Shaker, Aachen, 2003)

    Google Scholar 

  36. H. Sira-Ramirez, S. Agrawal, Differentially Flat Systems (Marcel Dekker, New York, 2004)

    MATH  Google Scholar 

  37. G.B. Stan, A. Hamadeh, R. Sepulchre, J. Gonçalves, Output synchronization in networks of cyclic biochemical oscillators, in 2007 American Control Conference, New York, 2007

    Google Scholar 

  38. J. Villagra, B. d’Andrea-Novel, H. Mounier, M. Pengov, Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)

    Google Scholar 

  39. D.Q. Wei, X.S. Luo, B. Zhang, Y.H. Qin, Controlling chaos in space-clamped FitzHugh–Nagumo neuron by adaptive passive method. Nonlinear Anal. Real World Appl. 11, 1752–1759 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Q.D. Wu, C.J. Liu, J.Q. Zhang, Q.J. Chen, Survey of locomotion control of legged robots inspired by biological concept. Sci China Ser F 52(10), 1715–1729 (2009)

    Article  MATH  Google Scholar 

  41. H. Yu, J. Wang, B. Deng, X. Wei, Y. Che, Y.K. Wong, W.L. Chan, K.M. Tsang, Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. Commun. Nonlinear Sci. Numer. Simul. 17, 1344–1354 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. T. Zhang, J. Wang, X. Fei, B. Deng, Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control. Chaos Solitons Fract. 33(1), 194–202 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigatos, G.G. (2015). Oscillatory Dynamics in Biological Neurons. In: Advanced Models of Neural Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43764-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43764-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43763-6

  • Online ISBN: 978-3-662-43764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics