Skip to main content

Bifurcations and Limit Cycles in Models of Biological Systems

  • Chapter
  • First Online:
Advanced Models of Neural Networks
  • 2492 Accesses

Abstract

The chapter proposes a systematic method for fixed point bifurcation analysis in circadian cells and similar biological models using interval polynomials theory. The stages for performing fixed point bifurcation analysis in such biological systems comprise (i) the computation of fixed points as functions of the bifurcation parameter and (ii) the evaluation of the type of stability for each fixed point through the computation of the eigenvalues of the Jacobian matrix that is associated with the system’s nonlinear dynamics model. Stage (ii) requires the computation of the roots of the characteristic polynomial of the Jacobian matrix. This problem is nontrivial since the coefficients of the characteristic polynomial are functions of the bifurcation parameter and the latter varies within intervals. To obtain a clear view about the values of the roots of the characteristic polynomial and about the stability features they provide to the system, the use of interval polynomials theory and particularly of Kharitonov’s stability theorem is proposed. In this approach the study of the stability of a characteristic polynomial with coefficients that vary in intervals is equivalent to the study of the stability of four polynomials with crisp coefficients computed from the boundaries of the aforementioned intervals. The efficiency of the proposed approach for the analysis of fixed points bifurcations in nonlinear models of biological neurons is tested through numerical and simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aqil, K.S. Hong, M.Y. Jeong, Synchronization of coupled chaotic FitzHugh–Nagumo systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1615–1627 (2012)

    Article  MathSciNet  Google Scholar 

  2. G. Baird Emertrout, D.H. Terman, Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol. 35 (Springer, New York, 2009)

    Google Scholar 

  3. G. Chen, J.L. Moiola, H.O. Wang, Bifurcation control: theories, methods and applications. Int. J. Bifurcat. Chaos, 10(3), 511–548 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. R.O. Dorak, Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields. Chaos Solitons Fract. 52, 66–72 (2013)

    Article  Google Scholar 

  5. H. Duan, C. Cai, C. Han, Y. Che, Bifurcation control in Morris-Lecar neuron model via washout filter with a linear term based on filter-aided dynamic feedback. Adv. Mater. Res. 485, 600–603 (2012)

    Article  Google Scholar 

  6. D.V. Efimov, A.L. Fradkov, Adaptive tuning to bifurcation for time-varying nonlinear systems. Automatica 42, 417–425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Haschke, J.J. Steil, Input-space bifurcation manifolds of recurrent neural networks. Neurocomputing 64, 25–38 (2005)

    Article  Google Scholar 

  8. B. Laroche, D. Claude, Flatness-based control of PER protein oscillations in a Drosophila model. IEEE Trans. Automat. Contr. 49(2), 175–183 (2004)

    Article  MathSciNet  Google Scholar 

  9. J.C. Leloup, D. Gonze, A. Goldbeter, Computational models for circadian rythms: deterministic versus stochastic approaches, in Computational Systems Biology ed. by A. Kriete, R. Eils (Elsevier, San Diego, 2006)

    Google Scholar 

  10. X. Liao, K.W. Wong, Z. Wu, Bifurcation analysis of a two-neuron system with distributed delays. Physica D 149, 123–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Lysetskiy, J.M. Zurada, Bifurcating neuron: computation and learning. Neural Netw. 17, 225–232 (2004)

    Article  MATH  Google Scholar 

  12. B. Nagy, Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model. Appl. Math. Model. 38, 1587–1598 (2008)

    Article  Google Scholar 

  13. B. Nagy, Analysis of the biological clock of Neurospora. J. Comput. Appl. Math. 226, 298–305 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. L.H. Nguyen, K.S. Hong, Hopf bifurcation control via a dynamic state-feedback control. Phys. Lett. A 376, 442–446 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. L.H. Nguyen, K.S. Hong, S. Park, Bifurcation control of the Morris-Lecar neuron model via a dynamic state feedback ontrol. Biol. Cybern. 106, 587–594 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Rigatos, E. Rigatou, A Kalman Filtering approach to robust synchronization of coupled neural oscilltors, in ICNAAM 2013, 11th International Conference on Numerical Analysis and Applied Mathematics, Rhodes, 2013

    Google Scholar 

  17. G.G. Rigatos, P. Siano, Design of robust electric power system stabilizers using Kharitonov’s theorem. Math. Comput. Simul. 82(1), 181–191 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Song, M. Han, J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM network with delays. Physica D 200 185–204 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. L.T. That, Z. Ding, Reduced-order observer design of multi-output nonlinear systems with application to a circadian model. Trans. Inst. Meas. Control 35(4), 417425 (2012)

    Google Scholar 

  20. R. Toscano, P. Lyonnet, Robust static output feedback controller synthesis usingKharitonov’s theoremand evolutionary algorithms. Inf. Sci. 180, 2023–2028 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Tsumoto, T. Yoshinaga, H. Iida, H. Kawakami, K. Ashara, Bifurcations in a mathematical model for circadian oscillations of clock genes. J. Theor. Biol. 239, 101–122 (2006)

    Article  Google Scholar 

  22. A. Vidal, Q. Zhang, C. Médigue, S. Fabre, F. Clément, DynPeak: an algorithm for pulse detection and frequency analysis in hormonal time series. PLoS One 7(7), e39001 (2012)

    Google Scholar 

  23. H. Wang, Y. Yu, R. Zhu, S. Wang, Two-parameter bifurcation in a two-dimensional simplified Hodgkin-Huxley model. Commun. Nonlinear Sci. Numer. Simul. 18, 184–193 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Wang, L. Chen, X. Fei, Bifurcation control of the Hodgkin-Huxley equations. Chaos Solitons Fract. 33, 217–224 (2004)

    Article  Google Scholar 

  25. X. Xu, H.Y. Hu, H.L. Wang, Stability switches, Hopf bifurcations and chaos of a neuron model with delay dependent parameters. Phys. Lett. A 354, 126–136 (2006)

    Google Scholar 

  26. T. Zhang, J. Wang, X. Fei, B. Deng, Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control. Chaos Solitons Fract. 33(1), 194–202 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigatos, G.G. (2015). Bifurcations and Limit Cycles in Models of Biological Systems. In: Advanced Models of Neural Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43764-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43764-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43763-6

  • Online ISBN: 978-3-662-43764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics