Skip to main content

Attractors in Associative Memories with Stochastic Weights

  • Chapter
  • First Online:
Advanced Models of Neural Networks
  • 2465 Accesses

Abstract

Neural associative memories are considered in which the elements of the weight matrix are taken to be stochastic variables. The probability density function of each weight is given by the solution of Schrödinger’s diffusion equation. The weights of the proposed associative memories are updated with the use of a learning algorithm that satisfies quantum mechanics postulates. This learning rule is proven to satisfy two basic postulates of quantum mechanics: (a) existence in superimposing states, (b) evolution between the superimposing states with the use of unitary operators. Taking the elements of the weight matrix of the associative memory to be stochastic variables means that the initial weight matrix can be decomposed into a superposition of associative memories. This is equivalent to mapping the fundamental memories (attractors) of the associative memory into the vector spaces which are spanned by the eigenvectors of the superimposing matrices and which are related to each other via unitary rotations. In this way, it can be shown that the storage capacity of the associative memories with stochastic weights increases exponentially with respect to the storage capacity of conventional associative memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Aiyer, M. Niranjan, F. Fallside, Theoretical investigation into the performance of the Hopfield model. IEEE Trans. Neural Netw. 15(1), 204–215 (1990)

    Article  Google Scholar 

  2. J.R. Chumbley, R.J. Dolan, K.J. Friston, Attractor models of working memory and their modulation by reward. Biol. Cybern. 98, 11–18 (2008)

    Article  MATH  Google Scholar 

  3. G. Deco, E.T. Rolls, Attention, short-memory and action selection: a unifying theory. Prog. Neurobiol. 76, 236–256 (2005)

    Article  Google Scholar 

  4. G. Deco, D. Marti, A. Ledberg, R. Reig, M.V. Sanchez Vives, Effective reduced diffusion-models: A data driven approach to the analysis of neuronal dynamics. PLoS Comput. Biol. 5(12), e1000587 (2009)

    MathSciNet  Google Scholar 

  5. D. Dubois, L. Foulloy, G. Mauris and H. Prade, Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities. Reliab. Comput. 10(4), 273–297 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. L.M. Harisson, K. David, K.J. Friston, Stochastic models of neuronal dynamics. Phil. Tran. R. Soc. B 360, 1075–1091 (2005)

    Article  Google Scholar 

  7. S. Haykin, Neural Networks: A Comprehensive Foundation (McMillan, New York, 1994)

    MATH  Google Scholar 

  8. J.J. Hopfield, Neural networks as physical systems with emergent computational abilities. Proc. Natl. Acad. Sci. USA 79, 2444–2558 (1982)

    Article  MathSciNet  Google Scholar 

  9. S. Hu, X. Liao, X. Mao, Stochastic Hopfield neural networks. J. Phys. A Math. Gen. 35, 1–15 (2003)

    Google Scholar 

  10. Y. Katory, Y. Otsubo, M. Okada, K. Aihara, Stability analysis of associative memory network composed of stochastic neurons and dynamic synapses. Front. Comput. Neurosci. 7, 6 (2013)

    Google Scholar 

  11. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence (Prentice Hall, Englewood Cliffs, 1992)

    MATH  Google Scholar 

  12. M. Loh, E.T. Rolls, G. Deco, Statistical fluctuation in attractor networks related to Schizophrenia. Pharmacopsychiatry 40, 78–84 (2007)

    Article  Google Scholar 

  13. M. Loh, E.T. Rolls, G. Deco, A dynamical systems hypothesis of Schizophrenia. PLoS Comput. Biol. 3(11), 1–11 (2007)

    Article  MathSciNet  Google Scholar 

  14. M. Mirrahimi, P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control. 45(5), 745–747 (2004)

    Article  MathSciNet  Google Scholar 

  15. M. Perus, H. Bischof, J. Caulfield, C.K. Loo, Quantum implementable selective reconstruction of high resolution images. Appl. Opt. 43, 6134–6138 (2004)

    Article  Google Scholar 

  16. G.G. Rigatos, Quantum wave-packets in fuzzy automata and neural associative memories. Int. J. Mod. Phys. C 18(9), 1551 (2007)

    MATH  MathSciNet  Google Scholar 

  17. G.G. Rigatos, Stochastic processes and neuronal modelling: quantum harmonic oscillator dynamics in neural structures. Neural Process. Lett. 32(2), 167–199 (2010)

    Article  Google Scholar 

  18. G.G. Rigatos, S.G. Tzafestas, Parallelization of a fuzzy control algorithm using quantum computation. IEEE Trans. Fuzzy Syst. 10, 451–460 (2002)

    Article  Google Scholar 

  19. G.G. Rigatos, S.G. Tzafestas, Quantum learning for neural associative memories. Fuzzy Sets Syst. 157(13), 1797–1813 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. E.T. Rolls, M. Loh, G. Deco, An attractor hypothesis of obsessive compulsive disorder. Eur. J. Neurosci. 28, 782–793 (2008)

    Article  Google Scholar 

  21. R.G. Spencer, Bipolar spectral associative memories. IEEE Trans. Neural Netw. 12, 463–475 (2001)

    Article  Google Scholar 

  22. S.G. Tzafestas, G.G. Rigatos, Stability analysis of an adaptive fuzzy control system using Petri Nets and learning automata. Math. Comput. Simul. 51, 315–339 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigatos, G.G. (2015). Attractors in Associative Memories with Stochastic Weights. In: Advanced Models of Neural Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43764-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43764-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43763-6

  • Online ISBN: 978-3-662-43764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics