Skip to main content

Unstable Supercritical Discontinuous Percolation Transitions

  • Chapter
  • First Online:
Explosive Percolation in Random Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 672 Accesses

Abstract

Percolation is a pervasive concept [1], which has applications in a wide variety of natural, technological and social systems [25], ranging from conductivity of composite materials [6, 7] and polymerization [8] to epidemic spreading [911] and information diffusion [12, 13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stauffer, D., Aharony, A.: Introduction to percolation theory. Taylor & Francis, London (1994)

    Google Scholar 

  2. Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629–1632 (1992)

    Article  Google Scholar 

  3. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    Article  Google Scholar 

  4. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99, 2566–2572 (2002)

    Article  MATH  Google Scholar 

  5. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)

    Article  Google Scholar 

  6. Andrade, J.S., Buldyrev, S.V., Dokholyan, N.V., Havlin, S., King, P.R., Lee, Y.K., Paul, G., Stanley, H.E.: Flow between two sites on a percolation cluster. Phys. Rev. E 62, 8270–8281 (2000)

    Article  Google Scholar 

  7. Sahimi, M.: Applications of Percolation Theory. Taylor & Francis, London (1994)

    Google Scholar 

  8. Ziff, R.M., Hendriks, E.M., Ernst, M.H.: Critical properties for gelation: a kinetic approach. Phys. Rev. Lett. 49, 593 (1982)

    Article  Google Scholar 

  9. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000)

    Article  Google Scholar 

  10. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  11. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  12. Strang, D., Soule, S.: Diffusion in organizations and social movements: from hybrid corn to poison pills. Ann. Rev. Sociol. 24, 265290 (1998)

    Article  Google Scholar 

  13. Lazarsfeld, P.F., Berelson, B., Gaudet, H.: The Peoples Choice: How the Voter Makes up his Mind in a Presidential Campaign. Columbia University Press, New York (1944)

    Google Scholar 

  14. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17 (1960)

    MATH  Google Scholar 

  15. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  16. Nagler, J., Levina, A., Timme, M.: Impact of single links in competitive percolation. Nat. Phys. 7, 265–270 (2011)

    Article  Google Scholar 

  17. Achlioptas, D.D., ’Souza, R.M., Spencer. J.: Explosive percolation in random networks. Science 323, 1453–1455 (2009)

    Google Scholar 

  18. Cho, Y.S., Kim, J.S., Park, J., Kahng, B, Kim, D.: Percolation transitions in scale-free networks under the Achlioptas process. Phys. Rev. Lett. 103, 135702 (2009)

    Google Scholar 

  19. Radicchi, F., Fortunato, S.: Explosive percolation in scale-free networks. Phys. Rev. Lett. 103, 168701 (2009)

    Article  Google Scholar 

  20. Radicchi, F., Fortunato, S.: Explosive percolation: a numerical analysis. Phys. Rev. E 81, 036110 (2010)

    Article  Google Scholar 

  21. Ziff, R.M.: Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks. Phys. Rev. Lett. 103, 045701 (2009)

    Article  Google Scholar 

  22. Ziff, R.M.: Scaling behavior of explosive percolation on the square lattice. Phys. Rev. E 82, 051105 (2010)

    Article  Google Scholar 

  23. Chae, H., Yook, S.-H., Kim, Y.: Explosive percolation on the Bethe lattice. Phys. Rev. E 85, 051118 (2012)

    Article  Google Scholar 

  24. Squires, S., Sytwu, K., Alcala, D., Antonsen, T.M., Ott, E., Girvan, M.: Not with a bang: weakly explosive percolation in directed networks. Phys. Rev. E 87, 052127 (2013)

    Article  Google Scholar 

  25. Kim, Y., Yun, Y.-K., Yook, S.-H.: Explosive percolation in a nanotube-based system. Phys. Rev. E 82, 061105 (2010)

    Article  Google Scholar 

  26. Rozenfeld, H.D., Gallos, L.K., Makse, H.A.: Explosive percolation in the human protein homology network. Eur. Phys. J. B 75, 305–310 (2010)

    Article  MATH  Google Scholar 

  27. Pan, R.K., Kivelä, M., Saramäki, J., Kaski, K., Kertész, J.: Using explosive percolation in analysis of real-world networks. Phys. Rev. E 83, 046112 (2011)

    Article  Google Scholar 

  28. da Costa, R.A., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105, 255701 (2010)

    Article  Google Scholar 

  29. Manna, S.S., Chatterjee, A.: A new route to explosive percolation. Phys. A 390, 177–182 (2011)

    Article  Google Scholar 

  30. Riordan, O., Warnke, L.: Explosive percolation is continuous. Science 333, 322–324 (2011)

    Article  Google Scholar 

  31. Grassberger, P., Christensen, C., Bizhani, G., Son, S.-W., Paczuski, M.: Explosive percolation is continuous, but with unusual finite size behavior. Phys. Rev. Lett. 106, 225701 (2011)

    Article  Google Scholar 

  32. Lee, H.K., Kim, B.J., Park, H.: Continuity of the explosive percolation transition. Phys. Rev. E 84, 020101(R) (2011)

    Google Scholar 

  33. Nagler, J., Tiessen, T, Gutch, H.W.: Continuous percolation with discontinuities. Phys. Rev. X 2, 031009 (2012)

    Google Scholar 

  34. Cho, Y.S., Kahng, B., Kim, D.: Cluster aggregation model for discontinuous percolation transitions. Phys. Rev. E 81, 030103(R) (2010)

    Article  Google Scholar 

  35. Chen, W., D’Souza, R.M.: Explosive percolation with multiple giant components. Phys. Rev. Lett. 106, 115701 (2011)

    Article  Google Scholar 

  36. Araújo, N.A.M., Herrmann, H.J.: Explosive percolation via control of the largest cluster. Phys. Rev. Lett. 105, 035701 (2010)

    Article  Google Scholar 

  37. Choi, W., Yook, S.-H., Kim, Y.: Explosive site percolation with a product rule. Phys. Rev. E 84, 020102(R) (2011)

    Article  Google Scholar 

  38. Cho, Y.S., Kahng, B.: Discontinuous percolation transitions in real physical systems. Phys. Rev. E 84, 050102(R) (2011)

    Article  Google Scholar 

  39. Panagiotou, K., Spöhel, R., Steger, A., Thomas, H.: Explosive percolation in Erdös-Rényi-like random graph processes. Electron. Notes Discrete Math. 38, 699–704 (2011)

    Article  Google Scholar 

  40. Boettcher, S., Singh, V., Ziff, R.M.: Ordinary percolation with discontinuous transitions. Nat. Commun. 3, 787 (2012)

    Article  Google Scholar 

  41. Bizhani, G., Paczuski, M., Grassberger, P.: Discontinuous percolation transitions in epidemic processes, surface depinning in random media, and Hamiltonian random graphs. Phys. Rev. E 86, 011128 (2012)

    Article  Google Scholar 

  42. Cao, L., Schwarz, J.M.: Correlated percolation and tricriticality. Phys. Rev. E 86, 061131 (2012)

    Article  Google Scholar 

  43. Chen, W., Nagler, J., Cheng, X., Jin, X., Shen, H., Zheng, Z., D’Souza, R.M.: Phase transitions in supercritical explosive percolation. Phys. Rev. E 87, 052130 (2013)

    Article  Google Scholar 

  44. Cho, Y.S., Hwang, S., Herrmann, H.J., Kahng, B.: Avoiding a spanning cluster in percolation models. Science 339, 1185–1187 (2013)

    Article  Google Scholar 

  45. Schrenk, K.J., Araújo, N.A.M., Herrmann, H.J.: Gaussian model of explosive percolation in three and higher dimensions. Phys. Rev. E 84, 041136 (2011)

    Article  Google Scholar 

  46. Schrenk, K.J., Felder, A., Deflorin, S., Araújo, N.A.M., D’Souza, R.M., Herrmann, H.J.: Bohman-Frieze-Wormald model on the lattice, yielding a discontinuous percolation transition. Phys. Rev. E 85, 031103 (2012)

    Article  Google Scholar 

  47. Chen, W., Zheng, Z., D’Souza, R.M.: Deriving an underlying mechanism for discontinuous percolation. Europhys. Lett. 100, 66006 (2012)

    Article  Google Scholar 

  48. Cho, Y.S., Kahng, B.: Suppression effect on explosive percolation. Phys. Rev. Lett. 107, 275703 (2011)

    Article  Google Scholar 

  49. Chen, W., Cheng, X., Zheng, Z., Chung, N.N., D’Souza, R.M., Nagler, J.: Unstable supercritical discontinuous percolation transitions. Phys. Rev. E 88, 042152 (2013)

    Article  Google Scholar 

  50. Bohman, T., Frieze, A., Wormald, N.C.: Avoidance of a giant component in half the edge set of a random graph. Random Struct. Algorithms 25, 432–449 (2004)

    Article  MathSciNet  Google Scholar 

  51. Riordan, O., Warnke, L.: Achlioptas processes are not always self-averaging. Phys. Rev. E 86, 011129 (2012)

    Article  Google Scholar 

  52. Ramirez, A.P., Shastry, B.S., Hayashi, A., Krajewski, J.J., Huse, D.A., Cava, R.J.: Multiple field-induced phase transitions in the geometrically frustrated dipolar magnet: Gd2Ti2O7. Phys. Rev. Lett. 89, 067202 (2002)

    Article  Google Scholar 

  53. Strzelecka, T.E., Davidson, M.W., Rill, R.L.: Multiple liquid crystal phases of DNA at high concentrations. Nature 331, 457 (1988)

    Article  Google Scholar 

  54. Armstrong, J.N., Felske, J.D., Chopra, H.D.: Multiple phase transitions found in a magnetic Heusler Alloy and thermodynamics of their magnetic internal energy. Phys. Rev. B 81, 174405 (2010)

    Article  Google Scholar 

  55. Schröder, M., Ebrahimnazhad Rahbari, S.H., Nagler, J.: Crackling noise in fractional percolation. Nat. Commun. 4, 2222 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, W. (2014). Unstable Supercritical Discontinuous Percolation Transitions. In: Explosive Percolation in Random Networks. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43739-1_5

Download citation

Publish with us

Policies and ethics