Skip to main content

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Ewing-Sarkome sind die zweithäufigsten primären Knochentumoren im Kindes- und Jugendalter. Vordringlich ist eine rechtzeitige Diagnose. Fortbestehende lokalisierte (Knochen-)Schmerzen bei Kindern, Jugendlichen und jungen Erwachsenen müssen innerhalb von 4 Wochen differenzialdiagnostisch abgeklärt sein. Diagnostisch wegweisend ist der Nachweis der EWS-Fli1-Genfusion im Tumorgewebe. Eine intensive Kombinationschemotherapie mit mindestens 4 Medikamenten ist als Standard anzusehen. Den höchsten Stellenwert haben alkylierende Substanzen und Anthrazykline. Eine operative und/oder radiotherapeutische Lokaltherapie der Primärtumorregion ist unverzichtbar. Die Komplexität der Therapiestrategie erfordert die Therapie in spezialisierten Sarkomzentren. Mit multimodaler Therapie liegen die Heilungsraten bei lokalisierter Erkrankung >70 %. Die Prognose für Ewing-Sarkom-Patienten ist bestimmt durch die Größe des Primärtumors, den Metastasierungsstatus und das biologische Ansprechen auf initiale Chemotherapie. Die große Mehrzahl geheilter Ewing-Tumor-Patienten führt ein gesundes Leben ohne beeinträchtigende Spätfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bacci G, Mercuri M et al. (2002) Neoadjuvant chemotherapy for Ewing’s tumour of bone: recent experience at the Rizzoli Orthopaedic Institute. Eur J Cancer 38: 2243–2251

    Google Scholar 

  • Baruchel S, Pappo A et al. (2012) A phase 2 trial of trabectedin in children with recurrent rhabdomyosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft tissue sarcomas: a report from the Children’s Oncology Group. Eur J Cancer 48: 579–585

    Google Scholar 

  • Burdach S, Jurgens H (2002) High-dose chemoradiotherapy (HDC) in the Ewing family of tumors (EFT). Crit Rev Oncol Hematol 41: 169–189

    Google Scholar 

  • Burgert EO Jr, Nesbit ME et al . (1990) Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: intergroup study IESS-II. J Clin Oncol 8:1514–1524

    Google Scholar 

  • Campanacci M, Mercuri M et al. (1998) The value of imaging in the diagnosis and treatment of bone tumors. Eur J Radiol 27 Suppl 1: S116–S122

    Google Scholar 

  • Cotterill SJ, Ahrens S et al. (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18: 3108–3114

    Google Scholar 

  • Craft AW, Cotterill SJ et al. (1997) Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer 33: 1061–1069

    Google Scholar 

  • De Alava E, Gerald WL (2000) Molecular biology of the Ewing’s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol 18: 204–213

    Google Scholar 

  • Delattre O, Zucman J et al. (1994) The Ewing family of tumors – a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331: 294–299

    Google Scholar 

  • Dockhorn-Dworniczak B, Schäfer KL et al. (1994) Diagnostic value of the molecular genetic detection of the t(11;22) translocation in Ewing’s tumours. Virchows Arch 425: 107–112

    Google Scholar 

  • Enneking WF (1989) Musculoskeletal tumor staging: 1988 update. Cancer Treat Res 44: 39–49

    Google Scholar 

  • Ernst I, Scobiola S, Eich HT (2013) Rolle der Strahlentherapie bei strahlensensiblen und strahlenresistenteren Knochentumoren. Onkologe 19: 652–656

    Google Scholar 

  • Ewing J (1921) Diffuse endothelioma of bone. Proc NY Pathol Soc 21: 17–24

    Google Scholar 

  • Ferrari S, Palmerini E et al. (2010) Vincristine, doxorubicin, cyclophosfamide, actinomycin D, ifosfamide, and etoposide in adult and pediatric patients with nonmetastatic Ewing sarcoma. Final results of a monoinstitutional study. Tumori 96: 213–218

    Google Scholar 

  • Fletcher CDM et al. (eds) (2013) WHO Classification of Tumours. Tumours of soft tissue and bone. WHO Press, Geneva

    Google Scholar 

  • Foulon S, Brennan B et al. (2016).Can postoperative radiotherapy be omitted in localised standard-risk Ewing sarcoma? An observational study of the Euro-E.W.I.N.G group.2 Eur J Cancer 61: 128–136

    Google Scholar 

  • Gerth HU, Juergens KU et al. (2007) Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med 48: 1932–1939

    Google Scholar 

  • Granowetter L, Womer R et al. (2003) Comparison of dose intensified and standard dose chemotherapy for the treatment of non-metastatic Ewing’s sarcoma (ES) and primitive neuroectodermal tumor (PNET) of bone and soft tissue: A Pediatric Oncology Group – Children’s Cancer Group phase III trial. Med Pediatr Oncol 37: 172

    Google Scholar 

  • Grier HE, Krailo MD et al. (2003) Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348: 694–701

    Google Scholar 

  • Haeusler J, Ranft A et al. (2010) The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 116: 443–450

    Google Scholar 

  • Hayes FA, Thompson EI et al. (1989) Therapy for localized Ewing’s sarcoma of bone. J Clin Oncol 7: 208–213

    Google Scholar 

  • Hunold A, Weddeling N et al. (2006) Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 47: 795–800

    Google Scholar 

  • Jürgens H, Göbel V et al. (1985)The Cooperative Ewing Sarcoma Study CESS 81 of the German Pediatric Oncology Society--analysis after 4 years]. Klin Padiatr. 197: 225–232

    Google Scholar 

  • Juergens C, Weston C et al. (2006) Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer 47: 22–29

    Google Scholar 

  • Jürgens H, Daw NC et al. (2011) Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol. 29: 4534–4540

    Google Scholar 

  • Kovar H (1998) Ewing’s sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol 10: 334–342

    Google Scholar 

  • Kovar H, Alonso J et al. (2012) The first European interdisciplinary ewing sarcoma research summit. Front Oncol 2: 54

    Google Scholar 

  • Kushner BH, Meyers PA, Gerald WL et al ( 1995) Very-high-dose short-term chemotherapy for poor-risk peripheral primitive neuroectodermal tumors, including Ewing’s sarcoma, in children and young adults.J Clin Oncol 13: 2796–3804

    Google Scholar 

  • Kushner BH, Meyers PA (2001) How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 19: 870–880

    Google Scholar 

  • Ladenstein R, Lasset C et al. (1995) Impact of megatherapy in children with high-risk Ewing’s tumours in complete remission: a report from the EBMT Solid Tumour Registry. Bone Marrow Transplant 15: 697–705

    Google Scholar 

  • Ladenstein R, Potschger U et al. (2010) Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial. J Clin Oncol 28: 3284–3291

    Google Scholar 

  • Le Deley MC, Paulussen M et al. (2014) Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 Trial. J Clin Oncol 32: 2440–2448

    Google Scholar 

  • Marina NM, Pappo AS et al. (1999) Chemotherapy dose-intensification for pediatric patients with Ewing’s family of tumors and desmoplastic small round-cell tumors: a feasibility study at St. Jude Children’s Research Hospital. J Clin Oncol 17: 180–190

    Google Scholar 

  • Meyer WH, Kun L et al. (1992) Ifosfamide plus etoposide in newly diagnosed Ewing’s sarcoma of bone. J Clin Oncol 10: 1737–1742

    Google Scholar 

  • Nesbit ME Jr, Gehan EA, Burgert EO et al. (1990) Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup study. J Clin Oncol 8: 1664–1674

    Google Scholar 

  • Oberlin O, Deley MC et al. (2001) Prognostic factors in localized Ewing’s tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study). Br J Cancer 85: 1646–1654

    Google Scholar 

  • Ozaki T, Hillmann A et al. (1996) Significance of surgical margin on the prognosis of patients with Ewing’s sarcoma. A report from the Cooperative Ewing’s Sarcoma Study. Cancer 78: 892–900

    Google Scholar 

  • Paulussen M, Ahrens S et al. (1998) Primary metastatic (stage IV) Ewing tumor: Survival analysis of 171 patients from the EICESS studies. Ann Oncol 9: 275–281

    Google Scholar 

  • Paulussen M, Ahrens S et al. (2001a) Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol 19: 1818–1829

    Google Scholar 

  • Paulussen M, Ahrens S et al. (2001b) Second malignancies after ewing tumor treatment in 690 patients from a cooperative German/Austrian/Dutch study. Ann Oncol 12: 1619–1630

    Google Scholar 

  • Paulussen M, Frohlich B, Jurgens H (2001c) Ewing tumour: Incidence, prognosis and treatment options. Paediatr Drugs 3: 899–913

    Google Scholar 

  • Paulussen M, Craft AW et al. (2008) Results of the EICESS-92 Study: two randomized trials of Ewing’s sarcoma treatment – cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 26: 4385–4393

    Google Scholar 

  • Potratz J, Dirksen U et al. (2012) Ewing sarcoma: clinical state-of-the-art. Pediatr Hematol Oncol 29: 1–11

    Google Scholar 

  • Rodriguez-Galindo C, Spunt SL, Pappo AS (2003) Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med Pediatr Oncol 40: 276–287

    Google Scholar 

  • Rosen G, Caparros B et al. (1978) Curability of Ewing’s sarcoma and considerations for future therapeutic trials. Cancer 41: 888–899

    Google Scholar 

  • Salzer-Kuntschik M, Delling G et al. (1983) Morphological grades of regression in osteosarcoma after polychemotherapy – study COSS 80. J Cancer Res Clin Oncol 106 (Suppl): 21–24

    Google Scholar 

  • Schleiermacher G, Peter M et al. (2003) Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized ewing tumor. J Clin Oncol 21: 85–91

    Google Scholar 

  • Schuck A, Ahrens S et al. (2003) Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. Int J Radiat Oncol Biol Phys 55: 168–177

    Google Scholar 

  • Smith MA, Ungerleider RS et al. (1991) Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J Natl Cancer Inst 83: 1460–1470

    Google Scholar 

  • Stahl M, Ranft A et al. (2011) Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 57: 549–553

    Google Scholar 

  • Stohr W, Paulides M et al. (2007) Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: A report from the late effects surveillance system. Pediatr Blood Cancer 48: 447–452

    Google Scholar 

  • Wagner LM, McAllister N et al. (2007) Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 48: 132–139

    Google Scholar 

  • West DC (2000) Ewing sarcoma family of tumors. Curr Opin Oncol 12: 323–329

    Google Scholar 

  • Winkelmann W, Jurgens H (1989) Local control in Ewing sarcoma. Comparative results following intralesional, marginal and tumor resection with healthy bone. Z Orthop Grenzgeb 127: 424–426

    Google Scholar 

  • Womer RB, West DC et al. (2012) Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 30: 4148–4154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Dirksen or H. Jürgens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Dirksen, U., Jürgens, H. (2018). Ewing-Sarkom. In: Niemeyer, C., Eggert, A. (eds) Pädiatrische Hämatologie und Onkologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43686-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43686-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43685-1

  • Online ISBN: 978-3-662-43686-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics