Chronische Überblähung bei COPD

  • Arnoldus J.R. van Gestel
  • Helmut Teschler
  • Jörg Steier

Zusammenfassung

Patienten mit COPD sind durch eine Atemflusslimitierung und Gasaustauschstörung charakterisiert. Welche Auswirkungen die daraus resultierende chronische Überblähung der Lunge hat, wird im folgenden Kapitel aufgezeigt.

Die Atmung ist die einzige Vitalfunktion, die willkürlich beeinflussbar ist. Für die Sauerstoffversorgung der peripheren Gewebe und die pH-Regulation des arteriellen Blutes ist nicht nur der Zustand von Lunge und Kreislauf entscheidend, sondern auch die Leistung der Atempumpe. Die Atempumpe erfordert eine koordinierte Zusammenarbeit aller Einzelfacetten, und sie spielt eine wesentliche Rolle bei der Aufrechterhaltung der körpereigenen Homöostase.

Literatur

  1. [1]
    O’Donnell DE, Revill SM, Webb KA (2001) Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164: 770–777Google Scholar
  2. [2]
    Benesch L, Cordes C, Franz IW et al. (2004) Chronisch-obstruktive Bronchitis und Emphysem (COPD): Umsetzungsempfehlung von Leitlinien. Herzmedizin 2004; 21: 42–48Google Scholar
  3. [3]
    Roca J, Whipp BJ (1997) Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Eur Respir J 10: 2662–2689Google Scholar
  4. [4]
    Mertzlufft F, Biedler A, Risch A (1998) Invasives Monitoring des pulmonalen Gasaustausches. Intensivmed 35(I): 36–42Google Scholar
  5. [5]
    Decramer M (1997) Hyperinflation and respiratory muscle interaction. Eur Respir J 10: 934–941Google Scholar
  6. [6]
    Decramer M (1989) Effects of hyperinflation on the respiratory muscles. Eur Respir J 2: 299–302Google Scholar
  7. [7]
    Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469Google Scholar
  8. [8]
    Grimby G, Goldman M, Mead J (1976) Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol 41: 739–751Google Scholar
  9. [9]
    Yan S, Sinderby C, Bielen P, Beck J, N Comtois, Sliwinski P (2002) Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J 16: 684–690Google Scholar
  10. [10]
    Dodd DS, Brancatisano T, Engel LA (1984) Chest wall mechanics during exercise in patients with severe chronic airflow obstruction. Am J Respir Crit Care Med 129: 33–38Google Scholar
  11. [11]
    Hodges PW, Gandevia SC (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 89: 967–976Google Scholar
  12. [12]
    Bruzek R, Bieber-Zschau M, Herz A (1995) Die Bauchmuskulatur als ventrales Aufrichtesystem. Manuelle Medizin 33: 115–120Google Scholar
  13. [13]
    Hodges PW, Butler JE, McKenzie DK, Gandevia SC (1997) Contraction of the human diaphragm during rapid postural adjustments. J Physiol 505.2: 539–548Google Scholar
  14. [14]
    De Troyer A, Leeper JB, McKenzie DK, Grandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med 155: 1335–1340Google Scholar
  15. [15]
    Lindemann H (1998) Respiratorische Insuffizienz und Sauerstofftherapie. Monatsschr Kinderheilkd 146: 896–903Google Scholar
  16. [16]
    Kafi SA, Serste T, Leduc D, Sergysels R, Ninane V (2002) Expiratory flow limitation during exercise in COPD: detection by manual compression of the abdominal wall. Eur Respir J 19: 919–927Google Scholar
  17. [17]
    Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469Google Scholar
  18. [18]
    Becker HF (2004) Bedeutung des Schlafs bei Patienten mit Lungenerkrankungen. Internist 45:1026–1034Google Scholar
  19. [19]
    Lindemann H (1998) Respiratorische Insuffizienz und Sauerstofftherapie. Monatsschr Kinderheilkd 146: 896–903Google Scholar
  20. [20]
    Köhler D (2002) Die überbewertete Hypoxämie. Pneumologie 56: 408–412Google Scholar
  21. [21]
    Köhler D, Greib C, Holland A, Schäfer H, Wichert P v (2001) Therapeutische Optionen bei chronisch ventilatorischer Insuffizienz. Internist 42: 363–372Google Scholar
  22. [22]
    Köhler D, Schönhofer B, Haidl P, Kemper P (2000) Ursache und Therapie der Hyperkapnie. Pneumologie 54: 434–439Google Scholar
  23. [23]
    Comerford MJ, Mottram SL (2001) Movement and stability dysfunction- contemporary developments. Manual Therapy 6(1): 15–26Google Scholar
  24. [24]
    Comerford MJ, Mottram SL (2001) Functional stability re-training: principles and strategies for managing mechanical dysfunction. Manual Therapy 6(1): 3–14Google Scholar
  25. [25]
    Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomere adaptability. J Appl Physiol 54: 1635–1640Google Scholar
  26. [26]
    Rochester DF (1991) The diaphragm in COPD: better than expected, but not good enough. N Engl J Med 325: 961–962Google Scholar
  27. [27]
    Decramer M (1993) Respiratory muscle interaction during acute and chronic hyperinflation. Arch Chest Dis 48: 483–488Google Scholar
  28. [28]
    Jolley CJ (2008) Neural Respiratory Drive in Healthy and in Chronic Obstructive Pulmonary Disease. Eur Respir J; epub doi:10.1183/09031936.00093408Google Scholar
  29. [29]
    Tobin MJ (1988) The respiratory muscles in disease. Clin Chest Med 9: 263–286Google Scholar
  30. [30]
    Macklem PT, Macklem DM, De Troyer A (1983) A model of inspiratory muscle mechanics. J Appl Physiol: Respirat Environ Exercise Physiol 55: 547–557Google Scholar
  31. [31]
    Ninane V, Rypens F, Yernault JC, De Troyer A (1992) Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 146: 16–21Google Scholar
  32. [32]
    Gugger M, Bachofen H (2001) Dyspnoe Teil 1: Grundlagen und Pathophysiologie. Schweiz Med Forum Nr. 67Google Scholar
  33. [33]
    Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151: 562–569Google Scholar
  34. [34]
    Cassart M, Pettiaux N, Gevenois PA, Paiva M, Estenne M (1997) Effect of Chronic Hyperinflation on Diaphragm Length and Surface Area. Am J Respir Crit Care Med 156: 504–508Google Scholar
  35. [35]
    Laghi F, Tobin MJ (2003) Disorders of the Respiratory Muscles. Am J Respir Crit Care Med 168: 10–48Google Scholar
  36. [36]
    Walsh JM, Webber CL Jr, Fahey PJ, Sharp JT (1992) Structural change of the thorax in chronic obstructive pulmonary disease. J Appl Physiol 72: 1270–1278Google Scholar
  37. [37]
    Newman S, Road J, Bellemare F, Clozel JP, Lavigne CM, Grassino A (1984) Respiratory muscle length measured by sonomicrometry. J Appl Physiol 56: 753–764Google Scholar
  38. [38]
    Gauthier AP, Verbanck S, Estenne M et al. (1994) Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol 76: 495–506Google Scholar
  39. [39]
    Gilmartin JJ, Gibson GJ (1984) Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax 39: 264–271Google Scholar
  40. [40]
    Gilmartin JJ, Gibson GJ (1986) Mechanisms of paradoxical ribcage motion in patients with obstructive pulmonary disease. Am Rev Respir Dis 134: 683–687Google Scholar
  41. [41]
    Orozo-Levi M, Gea J, LIoreta JL, et al. (1999) Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J 13(2): 371–8Google Scholar
  42. [42]
    Oczenski W, Andel H, Werba A (2005) Atmen und Atemhilfen. Thieme, Stuttgart New YorkGoogle Scholar
  43. [43]
    Aalkjaer C, Poston L (1996) Effects of pH on vascular tension: which are the important mechanisms? J Vasc Res 33: 347–359Google Scholar
  44. [44]
    Ogna A, Domenighetti G (2007) Die nichtinvasive Beatmung als Therapie der akut respiratorischen Insuffizienz. Kardiovaskuläre Medizin 10: 21–26Google Scholar
  45. [45]
    Road J, Newman S, Derenne JP, Grassino A (1986) In vivo lengthforce relationship of canine diaphragm. J Appl Physiol 60: 63–70Google Scholar
  46. [46]
    Smith J, Bellemare F (1987) Effect of lung volume on in vivo contraction characteristics of human diaphragm. J Appl Physiol 62: 1893–1900Google Scholar
  47. [47]
    Loring SH, De Troyer A (1985) Actions of the respiratory muscles. Lung biology in health and disease 29: 327–349Google Scholar
  48. [48]
    Mador MJ (1991) Respiratory muscle fatique and breathing pattern. Chest 100: 1430–1435Google Scholar
  49. [49]
    Goldspink G, Tabary C, Tabary JC, Tardiou G, Tardiou C (1974) Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. J Physiol 236: 733–42Google Scholar
  50. [50]
    Dempsey JA, Sheel AW, Derschak PA, Harms CA (2000) Mögliche Einschränkungen der sportlichen Belastbarkeit durch das Atmungssystem. Deutsche Zeitschrift für Sportmedizin 51: 318–326Google Scholar
  51. [51]
    Polkey MI, Kyroussis D, Hamnegard CH et al. (1996) Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154(5): 1310–1317Google Scholar
  52. [52]
    Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85(6): 2146–2158Google Scholar
  53. [53]
    Sieck GC, Han YS, Prakash YS (1998) Cross-bridge cycling kinetics, actomyosin ATPase activity and myosin heavy chain isoforms in skeletal and smooth respiratory muscles.Comp Biochem Physiol B Biochem Mol Biol 119: 435–450Google Scholar
  54. [54]
    Farkas G (1991) Functional characteristics of the respiratorymuscles. Semin Respir Med 12: 247–257Google Scholar
  55. [55]
    Berg F v d (2005) Angewandte Physiologie (2) Organsysteme verstehen. Thieme, StuttgartGoogle Scholar
  56. [56]
    Gibson GJ (1996) Pulmonary hyperinflation a clinical overview. Eur Respir J 9: 2640–2649Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arnoldus J.R. van Gestel
    • 1
  • Helmut Teschler
    • 2
  • Jörg Steier
    • 3
  1. 1.Departement Gesundheit, Institut für PhysiotherapieZürcher Hochschule für Angewandte Wissenschaften (ZHAW)WinterthurSchweiz
  2. 2.Westdeutsches LungenzentrumRuhrlandklinikEssenDeutschland
  3. 3.King`s College London/King’s Health PartnersLane Fox Respiratory Unit/Sleep Disorders CentreLondonUnited Kingdom

Personalised recommendations