Skip to main content

Chronische Überblähung bei COPD

  • Chapter
  • 6383 Accesses

Zusammenfassung

Patienten mit COPD sind durch eine Atemflusslimitierung und Gasaustauschstörung charakterisiert. Welche Auswirkungen die daraus resultierende chronische Überblähung der Lunge hat, wird im folgenden Kapitel aufgezeigt.

Die Atmung ist die einzige Vitalfunktion, die willkürlich beeinflussbar ist. Für die Sauerstoffversorgung der peripheren Gewebe und die pH-Regulation des arteriellen Blutes ist nicht nur der Zustand von Lunge und Kreislauf entscheidend, sondern auch die Leistung der Atempumpe. Die Atempumpe erfordert eine koordinierte Zusammenarbeit aller Einzelfacetten, und sie spielt eine wesentliche Rolle bei der Aufrechterhaltung der körpereigenen Homöostase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. O’Donnell DE, Revill SM, Webb KA (2001) Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164: 770–777

    Google Scholar 

  2. Benesch L, Cordes C, Franz IW et al. (2004) Chronisch-obstruktive Bronchitis und Emphysem (COPD): Umsetzungsempfehlung von Leitlinien. Herzmedizin 2004; 21: 42–48

    Google Scholar 

  3. Roca J, Whipp BJ (1997) Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Eur Respir J 10: 2662–2689

    Google Scholar 

  4. Mertzlufft F, Biedler A, Risch A (1998) Invasives Monitoring des pulmonalen Gasaustausches. Intensivmed 35(I): 36–42

    Google Scholar 

  5. Decramer M (1997) Hyperinflation and respiratory muscle interaction. Eur Respir J 10: 934–941

    Google Scholar 

  6. Decramer M (1989) Effects of hyperinflation on the respiratory muscles. Eur Respir J 2: 299–302

    Google Scholar 

  7. Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469

    Google Scholar 

  8. Grimby G, Goldman M, Mead J (1976) Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol 41: 739–751

    Google Scholar 

  9. Yan S, Sinderby C, Bielen P, Beck J, N Comtois, Sliwinski P (2002) Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J 16: 684–690

    Google Scholar 

  10. Dodd DS, Brancatisano T, Engel LA (1984) Chest wall mechanics during exercise in patients with severe chronic airflow obstruction. Am J Respir Crit Care Med 129: 33–38

    Google Scholar 

  11. Hodges PW, Gandevia SC (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 89: 967–976

    Google Scholar 

  12. Bruzek R, Bieber-Zschau M, Herz A (1995) Die Bauchmuskulatur als ventrales Aufrichtesystem. Manuelle Medizin 33: 115–120

    Google Scholar 

  13. Hodges PW, Butler JE, McKenzie DK, Gandevia SC (1997) Contraction of the human diaphragm during rapid postural adjustments. J Physiol 505.2: 539–548

    Google Scholar 

  14. De Troyer A, Leeper JB, McKenzie DK, Grandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med 155: 1335–1340

    Google Scholar 

  15. Lindemann H (1998) Respiratorische Insuffizienz und Sauerstofftherapie. Monatsschr Kinderheilkd 146: 896–903

    Google Scholar 

  16. Kafi SA, Serste T, Leduc D, Sergysels R, Ninane V (2002) Expiratory flow limitation during exercise in COPD: detection by manual compression of the abdominal wall. Eur Respir J 19: 919–927

    Google Scholar 

  17. Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469

    Google Scholar 

  18. Becker HF (2004) Bedeutung des Schlafs bei Patienten mit Lungenerkrankungen. Internist 45:1026–1034

    Google Scholar 

  19. Lindemann H (1998) Respiratorische Insuffizienz und Sauerstofftherapie. Monatsschr Kinderheilkd 146: 896–903

    Google Scholar 

  20. Köhler D (2002) Die überbewertete Hypoxämie. Pneumologie 56: 408–412

    Google Scholar 

  21. Köhler D, Greib C, Holland A, Schäfer H, Wichert P v (2001) Therapeutische Optionen bei chronisch ventilatorischer Insuffizienz. Internist 42: 363–372

    Google Scholar 

  22. Köhler D, Schönhofer B, Haidl P, Kemper P (2000) Ursache und Therapie der Hyperkapnie. Pneumologie 54: 434–439

    Google Scholar 

  23. Comerford MJ, Mottram SL (2001) Movement and stability dysfunction- contemporary developments. Manual Therapy 6(1): 15–26

    Google Scholar 

  24. Comerford MJ, Mottram SL (2001) Functional stability re-training: principles and strategies for managing mechanical dysfunction. Manual Therapy 6(1): 3–14

    Google Scholar 

  25. Farkas GA, Roussos C (1983) Diaphragm in emphysematous hamsters: sarcomere adaptability. J Appl Physiol 54: 1635–1640

    Google Scholar 

  26. Rochester DF (1991) The diaphragm in COPD: better than expected, but not good enough. N Engl J Med 325: 961–962

    Google Scholar 

  27. Decramer M (1993) Respiratory muscle interaction during acute and chronic hyperinflation. Arch Chest Dis 48: 483–488

    Google Scholar 

  28. Jolley CJ (2008) Neural Respiratory Drive in Healthy and in Chronic Obstructive Pulmonary Disease. Eur Respir J; epub doi:10.1183/09031936.00093408

    Google Scholar 

  29. Tobin MJ (1988) The respiratory muscles in disease. Clin Chest Med 9: 263–286

    Google Scholar 

  30. Macklem PT, Macklem DM, De Troyer A (1983) A model of inspiratory muscle mechanics. J Appl Physiol: Respirat Environ Exercise Physiol 55: 547–557

    Google Scholar 

  31. Ninane V, Rypens F, Yernault JC, De Troyer A (1992) Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 146: 16–21

    Google Scholar 

  32. Gugger M, Bachofen H (2001) Dyspnoe Teil 1: Grundlagen und Pathophysiologie. Schweiz Med Forum Nr. 67

    Google Scholar 

  33. Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151: 562–569

    Google Scholar 

  34. Cassart M, Pettiaux N, Gevenois PA, Paiva M, Estenne M (1997) Effect of Chronic Hyperinflation on Diaphragm Length and Surface Area. Am J Respir Crit Care Med 156: 504–508

    Google Scholar 

  35. Laghi F, Tobin MJ (2003) Disorders of the Respiratory Muscles. Am J Respir Crit Care Med 168: 10–48

    Google Scholar 

  36. Walsh JM, Webber CL Jr, Fahey PJ, Sharp JT (1992) Structural change of the thorax in chronic obstructive pulmonary disease. J Appl Physiol 72: 1270–1278

    Google Scholar 

  37. Newman S, Road J, Bellemare F, Clozel JP, Lavigne CM, Grassino A (1984) Respiratory muscle length measured by sonomicrometry. J Appl Physiol 56: 753–764

    Google Scholar 

  38. Gauthier AP, Verbanck S, Estenne M et al. (1994) Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol 76: 495–506

    Google Scholar 

  39. Gilmartin JJ, Gibson GJ (1984) Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax 39: 264–271

    Google Scholar 

  40. Gilmartin JJ, Gibson GJ (1986) Mechanisms of paradoxical ribcage motion in patients with obstructive pulmonary disease. Am Rev Respir Dis 134: 683–687

    Google Scholar 

  41. Orozo-Levi M, Gea J, LIoreta JL, et al. (1999) Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J 13(2): 371–8

    Google Scholar 

  42. Oczenski W, Andel H, Werba A (2005) Atmen und Atemhilfen. Thieme, Stuttgart New York

    Google Scholar 

  43. Aalkjaer C, Poston L (1996) Effects of pH on vascular tension: which are the important mechanisms? J Vasc Res 33: 347–359

    Google Scholar 

  44. Ogna A, Domenighetti G (2007) Die nichtinvasive Beatmung als Therapie der akut respiratorischen Insuffizienz. Kardiovaskuläre Medizin 10: 21–26

    Google Scholar 

  45. Road J, Newman S, Derenne JP, Grassino A (1986) In vivo lengthforce relationship of canine diaphragm. J Appl Physiol 60: 63–70

    Google Scholar 

  46. Smith J, Bellemare F (1987) Effect of lung volume on in vivo contraction characteristics of human diaphragm. J Appl Physiol 62: 1893–1900

    Google Scholar 

  47. Loring SH, De Troyer A (1985) Actions of the respiratory muscles. Lung biology in health and disease 29: 327–349

    Google Scholar 

  48. Mador MJ (1991) Respiratory muscle fatique and breathing pattern. Chest 100: 1430–1435

    Google Scholar 

  49. Goldspink G, Tabary C, Tabary JC, Tardiou G, Tardiou C (1974) Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. J Physiol 236: 733–42

    Google Scholar 

  50. Dempsey JA, Sheel AW, Derschak PA, Harms CA (2000) Mögliche Einschränkungen der sportlichen Belastbarkeit durch das Atmungssystem. Deutsche Zeitschrift für Sportmedizin 51: 318–326

    Google Scholar 

  51. Polkey MI, Kyroussis D, Hamnegard CH et al. (1996) Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 154(5): 1310–1317

    Google Scholar 

  52. Sinderby C, Beck J, Spahija J, Weinberg J, Grassino A (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85(6): 2146–2158

    Google Scholar 

  53. Sieck GC, Han YS, Prakash YS (1998) Cross-bridge cycling kinetics, actomyosin ATPase activity and myosin heavy chain isoforms in skeletal and smooth respiratory muscles.Comp Biochem Physiol B Biochem Mol Biol 119: 435–450

    Google Scholar 

  54. Farkas G (1991) Functional characteristics of the respiratorymuscles. Semin Respir Med 12: 247–257

    Google Scholar 

  55. Berg F v d (2005) Angewandte Physiologie (2) Organsysteme verstehen. Thieme, Stuttgart

    Google Scholar 

  56. Gibson GJ (1996) Pulmonary hyperinflation a clinical overview. Eur Respir J 9: 2640–2649

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Gestel, A., Teschler, H., Steier, J. (2014). Chronische Überblähung bei COPD. In: Physiotherapie bei chronischen Atemwegs- und Lungenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43678-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43678-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43677-6

  • Online ISBN: 978-3-662-43678-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics