Advertisement

Atemphysiotherapie

  • Arnoldus J.R. van Gestel
  • A. Gajic
  • A.K. Osthoff
  • Helmut Teschler

Zusammenfassung

Die Atemphysiotherapie zählt zu den ältesten physiotherapeutischen Interventionen und dient der Verbesserung des Atemmusters, mit dem Ziel, den Gesundheitsstatus des Patienten zu optimieren. Dieses Kapitel beschreibt evidenzbasiert die wichtigsten Aspekte der Atemphysiotherapie.Die Atemphysiotherapie dient der Verbesserung des Atemmusters, mit dem Ziel, den Gesundheitsstatus des Patienten zu optimieren. Eine chronisch-progressive, exspiratorische Atemflussbehinderung ist das Resultat einer chronisch-obstruktiven Bronchitis und entzündungsbedingter Umbauprozesse des Lungenparenchyms (Emphysem). Dieser emphysematöse Umbauprozess führt zur Zerstörung der Alveolarwände und dadurch zum Elastizitätsverlust des Lungengewebes. Hierdurch ist die erforderliche alveolare Retraktionskraft für die Exspiration vermindert, wodurch es zu Kompression der kleinen Atemwege durch das umgebende Parenchym kommt. Infolgedessen entstehen Engstellen (Stenosen), die Atemwege verlieren an Stabilität und kollabieren beim Atmen.

Literatur

  1. [1]
    Williams IP, Smith CM, McGavin CR (1982) Diaphragmatic breathing training and walking performance in chronic airways obstruction. Br J Dis Chest 76: 164–166Google Scholar
  2. [2]
    Cole MB, Stansky C, Roberts FE, Hargan SM (1962) Studies in emphysema: long-term results of training diaphragmatic breathing on the course of obstructive emphysema. Arch Phys Med Rehabil 43: 561–564Google Scholar
  3. [3]
    Kurabayashi H, Machida I, Handa H, Akiba T, Kubota K (1998) Comparison of three protocols for breathing exercises during immersion in 39 degrees C water for chronic obstructive pulmonary disease. Am J Phys Med Rehabil 77(2): 145–148Google Scholar
  4. [4]
    O’Donnell DE (2001) Ventilatory limitations in chronic obstructive pulmonary disease. Med Sci Sports Exerc 33(7 Suppl): 647-655Google Scholar
  5. [5]
    O’Donnell DE, Revill SM, Webb KA (2001) Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164: 770-777Google Scholar
  6. [6]
    Singh B, Eastwood PR, Finucane KE (2001) Volume displaced by diaphragm motion in emphysema, J Appl Physiol 91(5): 1913- 1923Google Scholar
  7. [7]
    Sackner MA, Gonzalez HF, Jenouri G, Rodriguez M (1984) Effects of abdominal and thoracic breathing on breathing pattern components in normal subjects and in patients with COPD. Am Rev Respir Dis 130: 584–587Google Scholar
  8. [8]
    Grimby G, Oxhoj H, Bake B (1975) Effects of abdominal breathing on distribution of ventilation in obstructive lung disease. Clin Sci Mol Med 48: 193–199Google Scholar
  9. [9]
    Gosselink RA, Wagenaar RC, Sargeant AJ, Rijswijk H, Decramer MLA (1995) Diaphragmatic breathing reduces efficiency of breathing in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 151: 1136–1142Google Scholar
  10. [10]
    Ito M, Kakizaki F, Tsuzura Y, Yamada M (1999) Immediate effect of respiratory muscle stretch gymnastics and diaphragmatic breathing on respiratory pattern. Respiratory Muscle Conditioning Group. Intern Med 38: 126-132Google Scholar
  11. [11]
    Vitacca M, Clini E, Bianchi L, Ambrosino N (1998) Acute effects of deep diaphragmatic breathing in COPD patients with chronic respiratory insufficiency. Eur Respir J 11: 408–415Google Scholar
  12. [12]
    Dechman G, Wilson CR (2004) Lippenbremse effektiver als Bauchatmung. Phys Ther 84: 1189-1197Google Scholar
  13. [13]
    Peper E (1988) Strategies to reduce the effort of breathing: electromyographic and incentive inspirometry biofeedback. In: von Euler C, Katz-Salamon M. Respiratory Psychophysiology. London: The Macmillan Press 113–122Google Scholar
  14. [14]
    Dechman G, Wilson CR. (2004) Lippenbremse effektiver als Bauchatmung. Phys Ther 84: 1189-1197Google Scholar
  15. [15]
    Oczenski W, Andel H, Werba A (2005) Atmen und Atemhilfen. Thieme, Stuttgart New YorkGoogle Scholar
  16. [16]
    Gosselink R, Langer D, Burtin C, Probst V. KNGF guidelines for physiotherapy in chronic obstructive pulmonary disease: Review of the evidence. www.pneumo.flogiston.netGoogle Scholar
  17. [17]
    Vogelmeier C, Buhl R, Criee CP et al. (2007) Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD) Pneumologie 61: 1–40Google Scholar
  18. [18]
    Tiep BL, Burns M, Kao D, Madison R, Herrera J (1986) Pursed lips breathing training using ear oximetry. Chest 90 (2): 218- 221Google Scholar
  19. [19]
    Breslin EH (1992) The pattern of respiratory muscle recruitment during pursed-lips breathing in COPD. Chest 101: 75-78Google Scholar
  20. [20]
    American Thoracic Society. Pulmonary Rehabilitation (1999) Am J Respir Crit Care Med 159 (5): 1666–1682Google Scholar
  21. [21]
    Spahija J, deMarchie M, Grassino A (2005) Effects of imposed pursed- lips breathing on respiratory mechanics and dyspnea at rest and during exercise in COPD. Chest 128: 640-650Google Scholar
  22. [22]
    Breslin EH (1992) The pattern of respiratory muscle recruitment during pursed-lips breathing in COPD. Chest 101: 75-78Google Scholar
  23. [23]
    Thoman RL, Stoker GL, Ross GC (1966) The efficacy of pursed-lips breathing in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 93: 100-106Google Scholar
  24. [24]
    Petty TL, Guthrie A (1971) The effects of augmented breathing maneuvres on ventilation in severe chronic airway obstruction. Respir Care 16: 104-111Google Scholar
  25. [25]
    Ingram RH, Schilder DP (1967) Effect of pursed lips breathing on the pulmonary pressure-flow relationship in obstructive lung disease. Am Rev Respir Dis 96: 381-388Google Scholar
  26. [26]
    De Troyer A, Leeper JB, McKenzie DK, Grandevia SC (1997) Neural drive to the diaphragm in patients with severe COPD. Am J Respir Crit Care Med 155: 1335–1340Google Scholar
  27. [27]
    Ninane V, Rypens F, Yernault JC, DeTroyer A (1992) Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis 146: 16-21Google Scholar
  28. [28]
    Gorini M, Misuri G, Duranti R et al. (1997) Abdominal muscle recruitment and PEEPi during bronchoconstriction in chronic obstructive pulmonary disease. Thorax 52: 355–361.Google Scholar
  29. [29]
    Dodd DS, Brancatisano T, Engel LA (1984) Chest wall mechanics during exercise in patients with severe chronic airflow obstruction. Am J Respir Crit Care Med 129: 33–38Google Scholar
  30. [30]
    Grimby G, Goldman M, Mead J (1976) Respiratory muscle action inferred from rib cage and abdominal V-P partitioning. J Appl Physiol 41: 739–751Google Scholar
  31. [31]
    Yan S, Sinderby C, Bieen P et al. (2000) Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J 16: 684–690Google Scholar
  32. [32]
    Gorman R, McKenzie DK, Pride NB, Tolman JF, Gandevia SC (2002) Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 1461–1469Google Scholar
  33. [33]
    Erpicum B, Willeput R, Sergysels R, DeCoster A (1984) Does abdominal breathing below FRC give a mechanical support for inspiration. Clin Respir Physiol. 20: 117Google Scholar
  34. [34]
    Reybrouck T, Wertelaers A, Bertrand P, Demedts M (1987) Myofeedback training of the respiratory muscles in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil 7: 18-22Google Scholar
  35. [35]
    Del Pozo J, Gevirtz RN, Scher B, Guarneri E (2004) Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. American Heart Journal 147: e11Google Scholar
  36. [36]
    Lehrer P, Smetankin A, Potapova T (2000) Respiratory sinus arrhythmia biofeedback therapy for asthma: A report of 20 unmedicated pediatric cases using the Smetankin methode. Applied Psychophysiology and Biofeedback 25: 193–200Google Scholar
  37. [37]
    Vaschillo E, Lehrer P, Rishe N, Konstantinov M (2002) Heart rate variability biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system. Appl Psychophysiol Biofeed 27: 1–27Google Scholar
  38. [38]
    Lehrer PM, Vaschillo E, Vaschillo B (2000) Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Appl Psychophysiol Biofeed 25: 177–191Google Scholar
  39. [39]
    Giardino ND, Chan L, Borson S (2004) Combined Heart Rate Variability and Pulse Oximetry Biofeedback for Chronic Obstructive Pulmonary Disease: Preliminary Findings. Applied Psychophysiology and Biofeedback 29: 121–133Google Scholar
  40. [40]
    Steier J, Petro W (2002) Physikalische Therapie bei COPD- Evidenz Based Medizin. Pneumologie 56: 388–396Google Scholar
  41. [41]
    Bekkering GE, Hendriks HJM, Chadwick-Straver RVM, Gosselink R, Jongmans M, Paterson WJ et al. (2005) Clinical practice guidelines for physical therapy in patients with chronic obstructive pulmonary disease . www.pneumo.flogiston.netGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arnoldus J.R. van Gestel
    • 1
  • A. Gajic
  • A.K. Osthoff
    • 2
  • Helmut Teschler
    • 3
  1. 1.Departement Gesundheit, Institut für PhysiotherapieZürcher Hochschule für Angewandte Wissenschaften (ZHAW)WinterthurSchweiz
  2. 2.Departement Gesundheit, Institut für PhysiotherapieZürcher Hochschule für Angewandte Wissenschaften (ZHAW)WinterthurSchweiz
  3. 3.Westdeutsches LungenzentrumRuhrlandklinikEssenDeutschland

Personalised recommendations