Skip to main content

Zusammenfassung

Im folgenden Kapitel werden Störungen des autonomen Nervensystems in Zusammenhang mit Atemwegs- und Lungenerkrankungen erläutert.Der Krankheitsverlauf der COPD ist durch eine progrediente Verschlechterung der Lungenfunktion und eine Abnahme der körperlichen Belastbarkeit und Lebensqualität gekennzeichnet, vor allem durch rezidivierende Exazerbationen und zunehmende Komorbiditäten. Die häufigsten Komorbiditäten bei chronisch obstruktiven Lungenerkrankungen sind kardiovaskuläre Erkrankungen, Gewichtsverlust, Verlust der fettfreien Masse verbunden mit Muskelatrophie, Osteoporose und Depression. Systemische Erkrankungen gehen häufig zusätzlich mit Störungen des autonomen Nervensystems (sekundäre autonome Dysfunktionen) in Form einer erhöhten neuro-endokrinen Aktivierung einher, die möglicherweise für das erhöhte Mortalitätsrisiko dieser Erkrankung mitverantwortlich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Die Länge der postganglionären sympathischen Nervenfasern beträgt durchschnittlich 30 cm. Die postganglionären parasympathischen Nervenfasern befinden sich direkt in der Herzwand und sind entsprechend kurz [21].

Literatur

  1. Watz H, Magnussen H (2006) Komorbiditäten bei COPD. Der Internist 47: 895–900

    Google Scholar 

  2. Tillmann (2005) Atlas der Anatomie. Springer, Heidelberg

    Google Scholar 

  3. Berg F v d (2005) Angewandte Physiologie (2) Organsysteme verstehen. Thieme, Stuttgart

    Google Scholar 

  4. Oczenski W, Andel H, Werba A (2005) Atmen und Atemhilfen. Thieme, Stuttgart New York

    Google Scholar 

  5. Hopp FA, Seagard JL, Bajic J, Zuperku EJ (1991) Respiratory responses to aortic and carotic chemoreceptor activation in the dog. J Appl Physiol 70: 2359–2550

    Google Scholar 

  6. Klinke R, Pape HK, Sibernagl S (2005) Physiologie. Thieme, Stuttgart New York

    Google Scholar 

  7. Heidl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S (2001) Marked Sympathetic Activation in Patients with Chronic Respiratory Failure. Am J Respir Crit Care Med 164: 597–601

    Google Scholar 

  8. Bekkering GE, Hendriks HJM, Chadwick-Staver RMV, Paterson WJ (1998) Guidelines for physiotherapeutic management in chronic obstructive pulmonary disease (COPD). Nederlands Paramedisch Instituut, Amersfoort

    Google Scholar 

  9. Bernards JA, Bouman LN (1994) Fysiologie van de mens. Bohn Stafleu van Loghum, Houten Diegem

    Google Scholar 

  10. Lanfranchi PA, Somers VK (2002) Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regulatory Integrative Comp Physiol 283: 815– 826

    Google Scholar 

  11. Haensch CA, Jörg J (2005) Die Analyse der Blutdruckregulation bei autonomer Dysfunktion. Klin Neurophysiol 36: 86–97

    Google Scholar 

  12. Ziemssen T, Prieur S, Reichmann H (2006) Das weite Feld der orthostatische Dysregulationen. Ärzteblatt 6: 247–252

    Google Scholar 

  13. Ferguson DW, Abboud FM, Mark AL (1995) Relative contribution of aortic and carotid baroreflexes to heart rate control in man during steady state and dynamic increases in arterial pressure. Journal of Clinical Investigation 76, 2265–2274

    Google Scholar 

  14. Unbehaun A (1999) Die vegetative Kontrolle der Herzfrequenz und ihre Koordination mit dem respiratorischen System untersucht im Schlafen und Wachen innerhalb der Pubertät: Eine zeitreihenanalytische Studie. Dissertation der Medizinischen Fakultät Charité der Humboldt-Universität Berlin

    Google Scholar 

  15. Fietze I (2003) Barorezeptorsensitivität, Herzfrequenzvariabilität und Blutdruckvariabilität bei Patienten mit einem milden, moderaten und schweren obstruktiven Schlafapnoe-Syndrom und bei gesunden Probanden. Habilitationssschrift der Humboldt-Universität Berlin

    Google Scholar 

  16. Dean E, Frownfelter D (2006) Cardiovascular and Pulmonary Physical Therapy: An Evidence and Praxis. Elsevier, Mosby

    Google Scholar 

  17. Raupach T, Bahr F, Herrmann P et al. (2007) Atemfrequenz-Reduktion senkt die sympathische Aktivität von COPD-Patienten. Pneumologie 61: 1055

    Google Scholar 

  18. Hölting T (2005) Das Blutdruckverhalten unter Hypoxie bei Patienten mit obstruktiver Schlafapnoe. Inaugural-Dissertation, Fachbereich Humanmedizin der Philipps-Universität Marburg

    Google Scholar 

  19. Jose AD, Taylor RR (1969) Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J Clin Invest 48: 2019–2031

    Google Scholar 

  20. Horn A (2003) Diagnostik der Herzfrequenzvariabilität in der Sportmedizin – Rahmenbedingungen und methodische Grundlagen. Dissertation der Fakultät für Sportmedizin der Ruhr-Universität Bochum

    Google Scholar 

  21. Markus KU (2003) Herzschlaglängenfolgen während Taktatmung als Marker der kardiorespiratorischen Innervation. Inaugural-Dissertation des Fachbereichs Humanmedizin der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  22. Akselrod S, Gordon D, Madwed JB et al. (1995) Hemodynamic regulation: investigation by spectral analysis. American Journal of Physiology 18: 867–875

    Google Scholar 

  23. Stein PK, Nelson P, Rottman JN et al. (1998) Heart rate variability reflects severity of COPD in PiZ α1-antitrypsin deficiency. Chest 113: 327–333

    Google Scholar 

  24. Bartels MN, Jelic S, Ngai P, Basner RC, DeMeersman RE (2003) High-Frequency Modulation of Heart Rate Variability during Exercise in Patients with COPD. Chest 124: 863–869

    Google Scholar 

  25. Tukek T, Yildiz P, Atilgan D et al. (2003) Effect of diurnal variability of heart rate on development of arrhythmia in patients with chronic obstructive pulmonary disease. Int J Cardiol 88: 199–206

    Google Scholar 

  26. Stewart AG, Waterhouse JC, Howard P (1991) Cardiovascular autonomic nerve function in patients with hypoxaemic chronic obstructive pulmonary disease. Eur Respir J 4: 1207–1214

    Google Scholar 

  27. Volterrani M, Scalvini S, Mazzuero G (1994) Decreased heart rate variability in patients with chronic obstructive pulmonary disease. Chest 106: 1432–1437

    Google Scholar 

  28. Stein PK, Nelson P, Rottman JN (1998) Heart rate variability reflects severity of COPD in PiZ α1-antitrypsin deficiency. Chest 113: 327–333

    Google Scholar 

  29. Scalvini S, Porta R, Zanelli E (1999) Effects of oxygen on autonomic nervous system dysfunction in patients with chronic obstructive pulmonary disease. Eur Respir J 13: 119–124

    Google Scholar 

  30. Kirstein N (2002) Verhalten der Herzfrequenzvariabilität bei Dauerbelastung unterschiedlicher Intensität auf dem Fahrradergometer. Dissertation der Ruhr-Universität Bochum

    Google Scholar 

  31. Yasuma F, Hayano J (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 125(2): 683–690

    Google Scholar 

  32. Pinsky MR (2005) Cardiovascular Issues in respiratory care. Chest 128: 592–597

    Google Scholar 

  33. Junichiro H, Fumihiko Y, Akiyoshi O, Seiji M, Takao F (1996) Respiratory Sinus Arrhythmia, A Phenomenon Improving Pulmonary Gas Exchange and Circulatory Efficiency. Circulation 94: 842– 847

    Google Scholar 

  34. Wasserman K, Hansen JE, Sue DY, Whipps BJ (1987) Principles of Exercise Testing and Interpretation. Lea & Febiger, Philadelphia

    Google Scholar 

  35. Holle H (2003) Die zeitliche Stabilität der Herzperiodenvariabilität während emotionaler Filme. Diplomarbeit der Universität Trier Fachbereich I – Psychologie, Trier

    Google Scholar 

  36. Zutphen HCF v, Bernards ATM (1991) Nederlands leerboek der fysische therapie in engere zin. Wetenschappelijke uitgeverij Bunge, Utrecht

    Google Scholar 

  37. Person MG, Lonnqvist PA, Gustafsson LE (1995) Positive end expiratory pressure ventilation elicits increases in endogenously formed nictric oxide as detected in air exhaled by rabbits. Anesthesiology 82: 969–974

    Google Scholar 

  38. Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human RR interval power spectra is largely ignored. J Appl Physiol 75(5): 2310–2318

    Google Scholar 

  39. Mesche N, Klare T (2005) Innere Medizin: Basislehrbuch Gesundheit und Krankheit. Elsevier, München; 5: 149–196

    Google Scholar 

  40. Costes F, Roche F, Pichot V et al. (2004) Influence of exercise training on cardiac baroflex sensitivity in patients with COPD. Eur Respir J 23: 396–401

    Google Scholar 

  41. Gugger M, Bachofen H (2001) Dyspnoe Teil 1: Grundlangen und Pathophysiologie. Schweiz Med Forum 6: 138–142

    Google Scholar 

  42. Schannwell C (2005) Herzerkrankungen des älteren Menschen. DMW 130: 693–697

    Google Scholar 

  43. Hulzebos E, Loo H v d (2002) Paramedische trainingsbegeleiding. Training van het cardiorespiratoir uithoudingsvermogen. Bohn Stafleu van Loghum (2)

    Google Scholar 

  44. Rühle KH (2006) Kardiale oder pulmonale Dyspnoe – Aussagemöglichkeiten der Ergospirometrie. Pneumologie 60: 777– 783

    Google Scholar 

  45. Perini R, Orizio C, Baselli G et al. (1990) The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol 61: 143–148

    Google Scholar 

  46. Casadei B, Cochrane S, Johnston J (1995) Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand 153: 125–131

    Google Scholar 

  47. Arai Y, Saul JP, Albrecht P (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256: 132–141

    Google Scholar 

  48. Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71: 1136–1142

    Google Scholar 

  49. Rimoldi O, Furlan R, Pagani M (1992) Analysis of neural mechanisms accompanying different intensities of dynamic exercise. Chest 101(suppl): 226–230

    Google Scholar 

  50. Nakamura Y, Yamamoto Y, Muraoka I (1993) Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol 74: 875–881

    Google Scholar 

  51. Aalkjaer C, Poston L (1996) Effects of pH on vascular tension: which are the important mechanisms? J Vasc Res 33: 347–359

    Google Scholar 

  52. Bartels MN, Gonzalez JM, Kim W, DeMeersman RE (2000) Cardiac- Autonomic Modulation in COPD. Chest 118: 691–696

    Google Scholar 

  53. Gilad O, Swenne CA, Davrath LR, Akselrod S (2005) Phase-averaged characterization of respiratory sinus arrhythmia pattern. Am J Physiol Heart Circ Physiol 288: 504–510

    Google Scholar 

  54. Kallenbach JM, Webster T, Dowdeswell R et al. (1985) Reflex heart rate control in asthma. Evidence of parasympathetic over activity. Chest 87: 644–648

    Google Scholar 

  55. Silke B, Hanratty CG, Riddell JG (1999) Heart-rate variability effects of beta-adrenoceptor agonists (xamoterol, prenalterol and salbutamol) assessed nonlinearly with scatterplots and sequence methods. J Cardiovasc Pharmacol 33: 859–867

    Google Scholar 

  56. Hanratty CG, Silke B, Riddell JG (1999) Evaluation of the effect on heart rate variability of a beta2-adrenoceptor agonist and antagonist using non-linear scatterplot and sequence methods. Br J Clin Pharmacol 47: 157–166

    Google Scholar 

  57. Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A (1986) Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension 8:147-153

    Google Scholar 

  58. Mancia G, Ferrari A, Gregorini L. et al. (1983) Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res 53:96-104

    Google Scholar 

  59. Claude J (2006) The enigma of Mayer waves: Facts and models. Cardiovascular Research 70:12- 21

    Google Scholar 

  60. Miller MR, Hankinson J, Brusasco V (2005) Series ATS/ERS Task Force: Standardisation of spirometry. Eur Respir J 26:319-338

    Google Scholar 

  61. Parati G, Faini A, Valentini M (2006) Blood Pressure Variability: Its Measurement and Significance in Hypertension. Curr Hypertens Rep 8(3):199-204

    Google Scholar 

  62. Grove JS, Reed DM, Yano K, Hwang LJ (1997) Variability in systolic blood pressure–-A risk factor for coronary heart disease? Am J Epidemiol 145:771-776

    Google Scholar 

  63. Mancia G, Parati G, Di Rienzo M, Zanchetti A (1997) Blood pressure variability. In: Zanchetti A, Mancia G, eds. Handbook of hypertension, vol 17: Pathophysiology of hypertension. Amsterdam: Elsevier Science:117-169

    Google Scholar 

  64. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, Schillaci G, De Caterina R (2007) Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 50(2):325-32

    Google Scholar 

  65. Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, Pessina AC (1992) Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med. 152:1855–1860

    Google Scholar 

  66. van Gestel AJR, Kohler M, Clarenbach CF (2012) Sympathetic overactivity and cardiovascular disease in patients with chronic obstructive pulmonary disease (COPD). Discov Med 14(79):359- 368.

    Google Scholar 

  67. Heindl S, C Dodt, M Krahwinkel, G Hasenfuss und S Andreas (2001) Short-term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart 85:185-90

    Google Scholar 

  68. Heindl S, M Lehnert, CP Criee, G Hasenfuss und S Andreas (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597-601

    Google Scholar 

  69. Raupach T, F Bahr, P Herrmann, L Luethje, K Heusser, G Hasenfuss, L Bernardi und S Andreas (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32:387-92

    Google Scholar 

  70. van Gestel AJR, Camen G, Clarenbach CF, Sievi N, Rossi VA, Kohler M. (2013) Quantifying the speed of fluctuations in systolic blood pressure. Hypertension Research doi:10.1038/hr.2013.62

    Google Scholar 

  71. van Gestel AJR, Clarenbach CF, Stöwhas AC, Rossi VA, Sievi N, Camen G, Kohler M. (2013) The speed of blood pressure fluctuations in patients with Chronic Obstructive Pulmonary Disease. Heart, Lung and Circulation- doi: 10.1016/j.hlc.2013.08.010.

    Google Scholar 

  72. Sin DD, Man SF (2003) Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation 11:1514–1519

    Google Scholar 

  73. YeS, Zhong H, Yanamadala S, Campese VM (2006) Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 48(2):309-315

    Google Scholar 

  74. Kishi T, Hirooka Y. Central Mechanisms of Abnormal Sympathoexcitation in Chronic Heart Failure (2012) Cardiol Res Pract 2012; Article ID 847172.

    Google Scholar 

  75. Kishi T (2012) Heart failure as an autonomic nervous system dysfunction. Journal of Cardiology 59:117—122

    Google Scholar 

  76. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M (2003) Effects of Moderate and Vigorous Physical Activity on Heart Rate Variability in a British Study of Civil Servants. Am J Epidemiol 158:135–143

    Google Scholar 

  77. Jennings G, Nelson L, Nestel P, Esler M, Korner P, Burton D, Bazelmans J (1986) The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation 73:30-40

    Google Scholar 

  78. Costes F, Roche F, Pichot V (2004) Influence of exercise training on cardiac baroreflex sensitivity in patients with COPD. Eur Respir J 23:396-401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Gestel, A., Teschler, H., Steier, J. (2014). Sympathovagale Imbalance. In: Physiotherapie bei chronischen Atemwegs- und Lungenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43678-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43678-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43677-6

  • Online ISBN: 978-3-662-43678-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics