Profiling Underwater Swarm Robotic Shoaling Performance Using Simulation

  • Mark Read
  • Christoph Möslinger
  • Tobias Dipper
  • Daniela Kengyel
  • James Hilder
  • Ronald Thenius
  • Andy Tyrrell
  • Jon Timmis
  • Thomas Schmickl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8069)

Abstract

Underwater exploration is important for mapping out the oceans, environmental monitoring, and search and rescue, yet water represents one of the most challenging of operational environments. The CoCoRo project proposes to address these challenges using cognitive swarm intelligent systems. We present here CoCoRoSim, an underwater swarm robotics simulation used in designing underwater swarm robotic systems. Collective coordination of robots represents principle challenge here, and use simulation in evaluating shoaling algorithm performance given the communication, localization and orientation challenges of underwater environments. We find communication to be essential for well-coordinated shoals, and provided communication is possible, inexact localization does not significantly impact performance. As a proof of concept simulation is employed in evaluating shoaling performance in turbulent waters.

Keywords

Migration Convection Torque Attenuation Expense 

References

  1. 1.
    Barry, R.: The FreeRTOS reference manual (2011). www.freertos.org
  2. 2.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for swarm robots. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 375–382. Springer, Heidelberg (2011) Google Scholar
  3. 3.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 424–431. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Gerkey, B., Vaughan, R., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  5. 5.
    Lau, H., et al.: Adaptive data-driven error detection in swarm robotics with statistical classifiers. Robot. Auton. Syst. 59(12), 1021–1035 (2011)CrossRefGoogle Scholar
  6. 6.
    Hugues, L., Bredeche, N.: Simbad: an autonomous robot simulation package for education and research. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  7. 7.
    Couzin, I., et al.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2149–2154 (2004)Google Scholar
  9. 9.
    Read, M., et al.: Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis. MCMDS 17(4), 296–302 (2011)Google Scholar
  10. 10.
    Reynolds, C.: Flocks, herts and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  11. 11.
    Schmickl, T., et al.: Cocoro - the self-aware underwater swarm. In: Proceedings of the SASO ’11 (2011)Google Scholar
  12. 12.
    Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)Google Scholar
  13. 13.
    Winkler, L., Wörn, H.: Symbricator3D – a distributed simulation environment for modular robots. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds.) ICIRA 2009. LNCS, vol. 5928, pp. 1266–1277. Springer, Heidelberg (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mark Read
    • 1
  • Christoph Möslinger
    • 2
  • Tobias Dipper
    • 3
  • Daniela Kengyel
    • 2
  • James Hilder
    • 1
  • Ronald Thenius
    • 2
  • Andy Tyrrell
    • 1
  • Jon Timmis
    • 1
  • Thomas Schmickl
    • 2
  1. 1.Department of ElectronicsUniversity of YorkYorkUK
  2. 2.Artificial Life LaboratoryUniversity of GrazGrazAustria
  3. 3.Institut für Parallele und Verteilte SystemeUniversität StuttgartStuttgartGermany

Personalised recommendations