Optical Coherence Tomography: OCT

  • Axel DongesEmail author
  • Reinhard Noll
Part of the Springer Series in Optical Sciences book series (SSOS, volume 188)


Optical coherence tomography (OCT) allows to measure geometric features inside translucent objects such as organic materials or organic tissues. The principle is based on interferometry. Time-domain and Fourier-domain methods are applied to make visible differences in the refractive index profile of the measuring object. We present the set-up of OCT sensors and show examples of applications such as 3D-imaging of an eye, B-scans of blood vessels or thickness measurements of multi-layer polymer films.


Optical Coherence Tomography Reflection Coefficient Coherence Length Path Difference Measuring Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Drexler, J. Fujimoto (eds.), Optical Coherence Tomography (Springer, New York, 2008)Google Scholar
  2. 2.
    B. Bouma, G. Tearney (eds.), Handbook of Optical Coherence Tomography (M. Dekker Inc., New York, 2002)Google Scholar
  3. 3.
    R. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press Inc., New York, 2007)Google Scholar
  4. 4.
    A. Fercher, W. Drexler, C. Hitzenberger, T. Lasser, Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)CrossRefADSGoogle Scholar
  5. 5.
    W. Wieser, T. Klein, D. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. Schmitt, R. Huber, Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express 3, 2647–2657 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Bezerra, M. Costa, G. Guagliumi, A. Rollins, D. Simon, Intracoronary optical coherence tomography: a comprehensive review. Cardiovasc. Intervent. 2, 1035–1046 (2009)CrossRefGoogle Scholar
  7. 7.
    B. Lumbroso, M. Rispoli. Guide to interpreting spectral domain optical coherence tomography (I.N.C. Innovation-News-Communication, J. Allyn Inc, Dublin, California, 2009)Google Scholar
  8. 8.
    Zeiss wall poster Exploring the Eye with Cirrus HD-OCT, Accessed 1 Nov 2013
  9. 9.
    C. Lu, M. Kraus, B. Potsaid, J. Liu, W. Choi, V. Jayaraman, A. Cable, J. Hornegger, J. Duker, J. Fujimoto, Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express 5, 293–311 (2013)CrossRefGoogle Scholar
  10. 10.
    Fraunhofer Institute for Laser Technology, Aachen (2011)Google Scholar
  11. 11.
    S. Hölters, C. Farkas, R. Fleige, A. Lenenbach, R. Noll, Low coherence interferometry for the inline measurement of translucent multilayer structures, 10th IMEKO Symposium Laser Metrology for Precision Measurement and Inspection in Industry (LMPMI) 2011. VDI-Berichte Nr. 2156, 161–168 (2011)Google Scholar
  12. 12.
    S. Hölters, J. Overbeck, L. Ederleh, W. Michaeli, A. Lenenbach, R. Noll, Precise measurement technology for complex multilayer films. Coating 9, 6–12 (2010)Google Scholar
  13. 13.
    P. Webster, L. Wright, K. Mortimer, B. Young, B. Leung, J. Yu, J. Fraser, Automatic real-time guidance of laser machining with inline coherent imaging, J. Laser Appl. 23, 1–6 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.nta Hochschule Isny—University of Applied SciencesIsnyGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations