Advertisement

Holographic Interferometry

  • Axel Donges
  • Reinhard NollEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 188)

Abstract

The principle of holography is introduced comprising the formation of virtual and real images of the reconstructed object. Holographic interferometry allows to make visible slight changes of the object shape as those induced by deformations or vibrations. The quantitative determination of the displacement vector with the help of the phase-shifting method is explained. We present the fundamentals of digital holography and digital holographic interferometry. Measurement set-ups of holographic interferometry are shown and various examples of applications are given as e.g. the visualization of vibrational modes of mechanical components.

Keywords

Interference Fringe Real Image Reference Beam Reference Wave Zone Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)CrossRefADSGoogle Scholar
  2. 2.
    G. Saxby, Practical Holography, 3rd edn. (IOP Publishing Ltd, London, 2004). ISBN 0 7503 0912 1Google Scholar
  3. 3.
    A. Blumlein, Improvements in and relating to sound-transmission, sound-recording and sound-reproducing, Patent GB394325 (1933)Google Scholar
  4. 4.
    E. Hecht, Optics, 4th edn. (Addison Wesley, Reading, 2003). ISBN 0-321-18878-0Google Scholar
  5. 5.
    R. Collier, C. Burkhardt, L. Lin, Optical Holography (Academic Press, New York, 1971)Google Scholar
  6. 6.
    G. Groh, Holographie: Physikalische Grundlagen und Anwendungen (Verlag Berliner Union, Stuttgart, 1973). ISBN 3-408-53501-9Google Scholar
  7. 7.
    D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, 7th edn. (Wiley, New York, 2005). ISBN 0-471-21643-7Google Scholar
  8. 8.
    L. Heflinger, R. Wuerker, R. Brooks, Holographic interferometry. J. Appl. Phys. 37, 642–649 (1966)CrossRefADSGoogle Scholar
  9. 9.
    C. Vest, Holographic Interferometry (Wiley, New York, 1979)Google Scholar
  10. 10.
    D. Meschede (ed.), Gerthsen Physik, 24th edn. (Springer, Berlin, 2010) ISBN 978-3-642-12893-6Google Scholar
  11. 11.
    P. Hariharan, B. Oreb, T. Eiju, Digital phase-shifting interferometry: a simple error-compensation phase calculation algorithm. Appl. Opt. 26, 2504–2506 (1987)CrossRefADSGoogle Scholar
  12. 12.
    W.H. Lee, Computer-generated holograms: techniques and applications. Prog. Opt. 16, 120–232 (1978)Google Scholar
  13. 13.
    O. Bryngdahl, F. Wyrowski, Digital holography—computer generated holograms. Prog. Opt. 28, 1–86 (1990)CrossRefGoogle Scholar
  14. 14.
    D. Schreier, Synthetische Holografie (VCH, Weinheim, 1984). ISBN 387664089XGoogle Scholar
  15. 15.
    S. Pasko, R.J. Wicki, Novel Fourier approach to digital holography. Opto-Electron. Rev. 10(2), 89–95 (2002)Google Scholar
  16. 16.
    U. Schnars, W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, Berlin, 2010). ISBN 978-3642060182Google Scholar
  17. 17.
    N. Pandey, B.M. Hennelly, D.P. Kelly, Th.J. Naughton, Speed up of Fresnel transforms for digital holography using pre-computation. Proc. SPIE 7442(744205), 1–11 (2009)Google Scholar
  18. 18.
    D. Carl, M. Fratz, A. Hofmann, H. Kock, Dreidimensionale Bilder auf einen Blick. Qualität und Zuverlässigkeit 55, 36–38 (2010)Google Scholar
  19. 19.
    W. Osten, A. Faridan, P. Gao, K. Körner, D. Naik, G. Pedrini, A. Singh, M. Takeda, M. Wilke, Recent advances in digital holography. Appl. Opt. 53, G44–G63 (2014)Google Scholar
  20. 20.
    F. Jahoda, R. Jeffries, G. Sawyer, Fractional-fringe holographic plasma interferometry. Appl. Opt. 6, 1407–1410 (1967)CrossRefADSGoogle Scholar
  21. 21.
    C. Tallents, M. Burgress, B. Luther-Davies, The determination of electron density profiles from refraction measurements obtained using holographic interferometry. Opt. Commun. 44, 384–387 (1983)CrossRefADSGoogle Scholar
  22. 22.
    C. Wanders, C. Haas, S. Lampe, R. Noll, Determination of absolute deformations of a vibrating automobile hood using holographic double-pulse interferometry, Laser in Engineering, ed. by W. Waidelich, 10th International Congress Series on Laser 91. (Springer-Verlag, Berlin Heidelberg, 1992), pp. 22–27. ISBN-13: 978-3-540-55247-5Google Scholar
  23. 23.
    R. Noll, Vibration analysis collects spatial information, Noise Vibr 24(4), 12–14 (1993)Google Scholar
  24. 24.
    M. Sellhorst, H. Ostendarp, C. Haas, R. Noll, Dreidimensionale holografische Interferometrie und Modalanalyse, Laser in Engineering, ed. by W. Waidelich, 11th International Congress Series on Laser 93. (Springer-Verlag, Berlin Heidelberg, 1994), pp. 139–142. ISBN 978-3-540-57444-6Google Scholar
  25. 25.
    H. Nebeling, R. Noll, H. Ostendarp, M. Sellhorst, M. Weck, Modalanalyse mit Holografie—ein Verfahren zur hochauflösenden berührungslosen Analyse von Schwingungen (VDI Verlag, Düsseldorf, 1996) Nr. 532, 143 p.Google Scholar
  26. 26.
    S. Pflüger, M. Sellhorst, V. Sturm, R. Noll, Fiber-optic transmission of stretched pulses from a Q-switched ruby laser. Appl. Opt. 35, 5165–5169 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.nta Hochschule Isny—University of Applied SciencesIsnyGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations