Advertisement

Laser-Induced Fluorescence

  • Axel DongesEmail author
  • Reinhard Noll
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 188)

Abstract

The basic principle of laser-induced fluorescence and fluorescence spectroscopy is presented to detect organic molecules with high sensitivity. We present various variants of this method: fluorescence correlation spectroscopy, fluorescence polarization spectroscopy, time-resolved fluorescence analysis. Examples of applications range from the inline measurement of the shape and deformation of metal sheets, measurement of organic residues on metal sheets, study of combustion processes, medical diagnostics of tumors to the detection of single labeled cells in microfluidic chips.

Keywords

Metal Sheet Fluorescence Correlation Spectroscopy Dichroic Mirror Bulge Test Time Correlate Single Photon Counting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Janzen, R. Noll, Laser-induced fluorescence, in Tailored Light 2, Laser Application Technology, ed. R. Poprawe (Springer, Berlin, 2011) chapter 19.3, pp. 500–509. ISBN 978-3-642-01236-5Google Scholar
  2. 2.
    P. Klán, J. Witz, Photochemistry of Organic Compounds: from Concepts to Practice (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta B 56, 933–945 (2001)Google Scholar
  5. 5.
    H. Haken, H.C. Wolf, Atom- und Quantenphysik—eine Einführung in die experimentellen und theoretischen Grundlagen (Springer, Berlin, 1980)Google Scholar
  6. 6.
    D. Skoog, J. Leary, Instrumentelle Analytik (Springer, Berlin, 1996)CrossRefGoogle Scholar
  7. 7.
    F. Settle (ed.) Handbook of Instrumental Techniques for Analytical Chemistry. (Prentice-Hall, New Jersey, 1997)Google Scholar
  8. 8.
    Römpp Chemie Lexikon, Online Version 2.0, Thieme Verlag. www.roempp.com
  9. 9.
    D. Andrews, Applied Laser Spectroscopy (VCH Publishers Inc., New York, 1992)Google Scholar
  10. 10.
    W. Demtröder, Laserspektroskopie (Springer, Berlin, 1997)Google Scholar
  11. 11.
    J. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic, New York, 1999)Google Scholar
  12. 12.
    J. Berg, L. Stryer, J. Tymoczjo, Lehrbücher der Biochemie, Biochemie, (Spektrum Akademischer Verlag, Heidelberg, 2003)Google Scholar
  13. 13.
    R. Rigler, E. Elson, Fluorescence Correlation Spectroscopy (Springer, Berlin, 2011)Google Scholar
  14. 14.
    J. Vrenegor, R. Noll, Multi-Punkt-Lasertriangulation mit adaptiver Belichtungsregelung für die 3D-Formänderungsanalyse, cooperative project funded by the German Ministry of Research, Nr. 13 N 8111, final report, July 2005Google Scholar
  15. 15.
    W. Bleck, M. Blumbach, Laser-aided flow curve determination in hydraulic bulging. Steel Res. Int. 76, 125–130 (2005)Google Scholar
  16. 16.
    V. Sturm, R. Noll, Rolling oil residue on steel strips: measurement using laser-induced fluorescence, Fraunhofer-Institute for Laser Technology ILT, Annual Report 2000, 73Google Scholar
  17. 17.
    H. Fuchs, Fuel distributions in engine is monitored with planar laser-induced fluorescence. Lambda Highlights - Lambda Physik 62, 1–3 (2003)Google Scholar
  18. 18.
    Pictures by courtesy of Prof. W. Stummer, Laser Klinikum Universtiät MünchenGoogle Scholar
  19. 19.
    C. Janzen, R. Noll, Biochemical analytics in microtiter plates, Fraunhofer-Institute for Laser Technology ILT, Annual Report 2012, 122Google Scholar
  20. 20.
    Commission Regulation (EC) No 1881/2006 of December 2006 setting levels for certain contaminants in foodstuffs, Sect. 2 Mycotoxins, p. L 364/17Google Scholar
  21. 21.
    G. Meineke, D. Flitsch, A. Lenenbach, R. Noll, Fluorescence sensors for parallel measurements in multichannel microfluidic devices covering the full channel cross sections. Proc. of SPIE 8615, 86151C-1–8615C-7 (2013)Google Scholar
  22. 22.
    A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Zhang, G. Marti, R. Vogt, Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment. J. Res. Natl. Inst. Stan. 107, 83–91 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.nta Hochschule Isny—University of Applied SciencesIsnyGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations