Advertisement

Laser Spectroscopy

  • Axel Donges
  • Reinhard Noll
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 188)

Abstract

Laser spectroscopy utilizes the specific properties of atoms and molecules to gain information about the chemical composition of the test object. The principle of laser material analysis is described as well as the important underlying physical processes. The evaluation of the emitted spectra yields the composition of the material. Examples of applications for mix-up detection, material-specific recycling and inline process control tasks are presented. Light detection and ranging—LIDAR—is a spectroscopic method for the remote analysis of the composition of gases in the atmosphere. The working principle and the methods for the signal evaluation are presented. Examples of applications are described such as measurements of atmospheric gas constituents, aerosol particles, atmosphere dynamics and organic pollutions in water. Coherent anti-Stokes Raman spectroscopy—CARS—is based on the non-linear interaction of laser light with matter. By this, information about the temperature and concentration of molecules in gas atmospheres is gained. Examples of applications are combustion processes such as Diesel and Otto engines, gas discharges, graphite furnaces or novel types of microscopy to make visible cellular structures of living cells.

Keywords

Laser Pulse Workpiece Surface Laser Pulse Energy Lidar System Backscatter Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Scott, A. Strasheim, Time-resolved direct-reading spectrochemical analysis using a laser source with medium pulse-repetition rate. Spectrochim. Acta 26B, 707–719 (1971)CrossRefADSGoogle Scholar
  2. 2.
    J. Belliveau, L. Cadwell, K. Coleman, L. Hüwel, H. Griffin, Laser-induced breakdown spectroscopy of steels at atmospheric pressure and in air. Appl. Spectrosc. 39, 727–729 (1985)CrossRefADSGoogle Scholar
  3. 3.
    J. Millard, R. Dalling, L. Radziemski, Time-resolved laser-induced breakdown spectrometry for the rapid determination of beryllium in beryllium–copper alloys. Appl. Spectrosc. 40, 491–494 (1986)CrossRefADSGoogle Scholar
  4. 4.
    D. Cremers, The analysis of metals at a distance using laser-induced breakdown spectroscopy. Appl. Spectrosc. 41, 572–579 (1987)CrossRefADSGoogle Scholar
  5. 5.
    J. Henning, Der Spektralapparat Kirchhoffs und Bunsens (Deutsches Museum, Verlag für Geschichte der Naturwissenschaften und der Technik, Berlin, 2003)Google Scholar
  6. 6.
    R. Noll, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer, Berlin, 2012), ISBN 978-3-642-20667-2, 543 pGoogle Scholar
  7. 7.
    H. Carslaw, J. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1959) reprint 2000, ISSBN 0 19 853368 3Google Scholar
  8. 8.
    R. Klein, Bearbeitung von Polymerwerkstoffen mit infraroter Laserstrahlung, Dissertation, Aachen, 1990Google Scholar
  9. 9.
    VDI-Wärmeatlas, Springer-Verlag, Berlin, 11. Aufl., 2013, ISBN 978-3-642-19980-6, 1760 p.Google Scholar
  10. 10.
    R. Wester, Laserinduziertes Abdampfen als Basisprozess des Bohrens, Fräsens und Schneidens, Laser und Optoelektronik 23, 60–63 (1991)Google Scholar
  11. 11.
    E. Beyer, Einfluss des laserinduzierten Plasmas beim Schweißen mit CO2-Lasern. Schweißtechnische Forschungsberichte, Bd. 2, Düsseldorf, Deutscher Verlag für Schweißtechnik, 1985Google Scholar
  12. 12.
    N. Damany, J. Romand, B. Vodar (ed.), Vacuum Ultraviolet Radiation Physics (Pergamon Press, New York, 1974) ISBN 0-08-016984-8Google Scholar
  13. 13.
    A. Zaidel, V. Prokofev, S. Raiskii, V. Slavnyi, E. Shreider, Tables of Spectral Lines (IFI/Plenum, New York, 1970), 782 p.Google Scholar
  14. 14.
    W. Wiese, M. Smith, B. Glennon, Atomic Transition Probabilities, vol. I, II. National Standard Reference Data Series. (National Bureau of Standards 4, Washington, 1966)Google Scholar
  15. 15.
  16. 16.
    P. Smith, C. Heise, J. Esmond, R. Kurucz, Atomic Spectral Line Database, ed. by R.L. Kurucz. CD-ROM 23, http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html
  17. 17.
    R. Noll, R. Wester, Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy. J. Appl. Phys. 106, 123302 (2009)CrossRefADSGoogle Scholar
  18. 18.
    L. Radziemski, T. Loree, D. Cremers, H. Hoffmann, Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55, 1246–1252 (1983)CrossRefGoogle Scholar
  19. 19.
    R. Noll, I. Mönch, O. Klein, A. Lamott, Concept and performance of inspection machines for industrial use based on LIBS. Spectrochim. Acta B 60, 1070–1075 (2005)CrossRefADSGoogle Scholar
  20. 20.
    C. Gehlen, J. Makowe, R. Noll, Automatisierte Verwechslungsprüfung von Edelstahl-halbzeugen in der Produktion. stahl und eisen 129, S70–S72 (2009)Google Scholar
  21. 21.
    International Standard, Safety of Laser Products—Part 1: Equipment Classification and Requirements, 200 p. IEC 60825-1, Ed. 2.0, (2007)Google Scholar
  22. 22.
    German Standard, Technical Availability of Machines and Production Lines, Terms, Definitions, Determination of Time Periods and Calculation. VDI 3423, January 2002Google Scholar
  23. 23.
    H. Kunze, R. Noll, J. Hertzberg, R. Sattmann, Laser-Stoffanalytik, Proc. 10. Int. Kongresses Laser 91 Optoelektronik (Springer-Verlag, Berlin, 1992), pp. 181–185Google Scholar
  24. 24.
    R. Noll, C. Fricke-Begemann, P. Jander, T. Kuhlen, V. Sturm, P. Werheit, J. Makowe, Perspektiven der Lasertechnik zur Steigerung der Ressourceneffizienz, Hrsg. U. Teipel, Rohstoffeffizienz und Rohstoffinnovation, Fraunhofer Verlag, 2010, S. 287–298Google Scholar
  25. 25.
    R. Noll, V. Sturm, C. Fricke-Begemann, P. Werheit, J. Makowe, Laser-induced breakdown spectroscopy—new perspectives for in-line analysis of materials. Metall. Anal. 30, 22–30 (2010)Google Scholar
  26. 26.
    P. Werheit, C. Fricke-Begemann, M. Gesing, R. Noll, Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. J. Anal. At. Spectrom. 26, 2166–2174 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Pilz, Online-Analytik zur Prozesskontrolle in der voestalpine Stahl GmbH. Berg- und Hüttenmännische Monatshefte (BHM) 157, 250–257 (2012)CrossRefGoogle Scholar
  28. 28.
    V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, R. Noll, Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works. Anal. Chem. (2014). DOI:  10.1021/ac5022425
  29. 29.
    R. Noll, R. Sattmann, Lasergestützte Stoffanalyse für die online Prüfung von Oberflächenschichten, Proc. Surtec Berlin 1991, Ed. Deutsche Forschungsgemeinschaft für Oberflächenbehandlung, Düsseldorf, 1991, S. 367–374Google Scholar
  30. 30.
    H. Bette, R. Noll, High-speed laser-induced breakdown spectrometry for scanning microanalysis. J. Phys. D Appl. Phys. 37, 1281–1288 (2004)CrossRefADSGoogle Scholar
  31. 31.
    H. Bette, R. Noll, G. Müller, H.-W. Jansen, Ç. Nazikkol, H. Mittelstädt, High-speed scanning laser-induced breakdown spectroscopy at 1000 Hz with single pulse evaluation for the detection of inclusions in steel. J. Laser Appl. 17, 183–190 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Bette, R. Noll, High-speed, high-resolution LIBS using diode-pumped solid-state lasers, Laser-Induced Breakdown Spectroscopy, Chap. 14, ed. by A. Miziolek, V. Palleschi, I. Schechter (Cambridge University Press, Cambridge, 2006), pp. 490–515Google Scholar
  33. 33.
    F. Boué-Bigne, Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: an approach to quantification. Appl. Spectrosc. 61, 333–337 (2007)CrossRefADSGoogle Scholar
  34. 34.
    F. Boué-Bigne, Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization. Spectrochimica Acta Part B 63, 1122–1129 (2008)CrossRefADSGoogle Scholar
  35. 35.
    V. Sturm, J. Vrenegor, R. Noll, M. Hemmerlin, Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 19, 451–456 (2004)CrossRefGoogle Scholar
  36. 36.
    H. Balzer, M. Hoehne, R. Noll, V. Sturm, New approach to monitoring the Al depth profile of hot-dip galvanised sheet steel online using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 385, 225–233 (2006)CrossRefGoogle Scholar
  37. 37.
    H. Balzer, M. Hoehne, V. Sturm, R. Noll, Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy. Spectrochimica Acta B 60, 1172–1178 (2005)CrossRefADSGoogle Scholar
  38. 38.
    H. Balzer, S. Hölters, V. Sturm, R. Noll, Systematic line selection for online coating thickness measurements of galvanised sheet steel using LIBS. Anal. Bioanal. Chem. 385, 234–239 (2006)CrossRefGoogle Scholar
  39. 39.
    M. Scharun, C. Fricke-Begemann, R. Noll, Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks—a comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus. Spectrochimica Acta Part B 87, 198–207 (2013)CrossRefADSGoogle Scholar
  40. 40.
    R. Measures (ed.), Laser Remote Chemical Analysis (Wiley, New York, 1988)Google Scholar
  41. 41.
    C. Weitkamp, W. Lahmann, W. Staehr, Reichweite- und Empfindlichkeitsoptimierung beim DAS-LIDAR. Laser u. Optoelektronik 19, 375–381 (1987)Google Scholar
  42. 42.
    Y. Carts, LIDAR proves useful in studies of the environment. Laser Focus World 11, 53–66 (1991)ADSGoogle Scholar
  43. 43.
    T. McGee, D. Whiteman, R. Ferrare, J. Butler, J. Burris, STORZ LITE: NASA Goddard stratospheric ozone LIDAR trailer experiment. Opt. Eng. 30, 31–39 (1991)CrossRefADSGoogle Scholar
  44. 44.
    H. Claude, Ozonmessung mittels LIDAR am Hohenpeißenberg, Proc. 10. Int. Kongr. Laser ´89 Optoelektronik, Springer Verlag, Berlin, 1990, 408–411Google Scholar
  45. 45.
    H. Kölsch, P. Lambelet, H. Limberger, P. Rairoux, S. Recknagel, J. Wolf, L. Wöste, LIDAR-pollution monitoring of the atmosphere, Proc. 10. Int. Kongr. Laser ´89 Optoelektornik, Springer Verlag, Berlin, 1990, 412–415Google Scholar
  46. 46.
    R. Dubinsky, LIDAR moves toward the 21st century. Laser Optron. 4, 92–106 (1988)Google Scholar
  47. 47.
    A. Beck, J. Fricke, LIDAR-Systeme erfassen atmosphärischen Aerosolgehalt. Physik in unserer Zeit 21, 81–83 (1990)CrossRefADSGoogle Scholar
  48. 48.
    C. Weitkamp (ed.), LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, New York, 2005), 455 pGoogle Scholar
  49. 49.
    D. Lajas, P. Ingmann, T. Wehr, A. Ansmann, Aerosols and clouds: improved knowledge through space borne LIDAR measurements, in 3rd Symposium on LIDAR Atmospheric Applications, P1.17, 4 p., 2007Google Scholar
  50. 50.
    J. Carter, K. Schmid, K. Waters, L. Betzhold, B. Hadley, R. Mataosky, J. Halleran, Lidar 101: An Introduction to LIDAR Technology, Data, and Applications (National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, Charleston, 2012), 76 p.Google Scholar
  51. 51.
    R. Hall, A. Eckbreth, Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics, in Laser Applications, vol. V, ed. by J. Ready, R. Erf (Academic Press, New York, 1984), pp. 213–309Google Scholar
  52. 52.
    J. Hertzberg, Einsatz der CARS-Spektroskopie zur Untersuchung einer CO2-Laser-gasentladung, Dissertation, RWTH Aachen University, 1993Google Scholar
  53. 53.
    D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K. Knoche, G. Herziger, Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS). Appl. Phys. B 55, 378–380 (1992)CrossRefADSGoogle Scholar
  54. 54.
    I. Plath, CARS-Temperaturmessungen an laminaren und turbulenten Flammen - Untersuchung der Messgenauigkeit des Einzelpulsverfahres, Dissertation, University Stuttgart, 1991Google Scholar
  55. 55.
    C. Rieck, B. Bödefeld, R. Noll, G. Edwards, S. Boyes, M. Péalat, P. Bouchardy, N. Dorwal, J. Fischer, M. Stock, Development of a transfer standard for laser thermometry. SPIE Vol. 3107, 74–85 (1997)CrossRefADSGoogle Scholar
  56. 56.
    D. Brüggemann, Entwicklung der CARS-Spektroskopie zur Untersuchung der Verbrennung im Otto-Motor, Dissertation, RWTH Aachen University, 1989Google Scholar
  57. 57.
    B. Welz, M. Sperling, G. Schlemmer, N. Wenzel, G. Marowsky, Spatially and temporally resolved gas phase temperature measurements in a Massmann-type graphite tube furnace using coherent anti-Stokes Raman scattering. Spectrochim. Acta, Part B 43, 1187–1207 (1988)CrossRefADSGoogle Scholar
  58. 58.
    J. Hertzberg, R. Noll, P. Loosen, G. Herziger, Spatially resolved temperature measurements in a carbon-dioxide-laser discharge by folded BOXCARS, in Proceedings of XI European CARS Workshop, ed. by F. Castelucci, World Scientific Publishing, (1992), pp. 109–114Google Scholar
  59. 59.
    A. Zumbusch, A. Volkmer, Einblick in das Unsichtbare – Nichtlineare optische Phänomene ermöglichen die chemisch selektive Mikroskopie ohne Anfärbung. Physik Journal 4, 31–37 (2005)Google Scholar
  60. 60.
    A. Volkmer, J. Cheng, X. Xie, Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett. 87, 23901–23904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.nta Hochschule Isny—University of Applied SciencesIsnyGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations