Skip to main content

Laser Spectroscopy

  • Chapter
  • First Online:
Laser Measurement Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 188))

  • 3843 Accesses

Abstract

Laser spectroscopy utilizes the specific properties of atoms and molecules to gain information about the chemical composition of the test object. The principle of laser material analysis is described as well as the important underlying physical processes. The evaluation of the emitted spectra yields the composition of the material. Examples of applications for mix-up detection, material-specific recycling and inline process control tasks are presented. Light detection and ranging—LIDAR—is a spectroscopic method for the remote analysis of the composition of gases in the atmosphere. The working principle and the methods for the signal evaluation are presented. Examples of applications are described such as measurements of atmospheric gas constituents, aerosol particles, atmosphere dynamics and organic pollutions in water. Coherent anti-Stokes Raman spectroscopy—CARS—is based on the non-linear interaction of laser light with matter. By this, information about the temperature and concentration of molecules in gas atmospheres is gained. Examples of applications are combustion processes such as Diesel and Otto engines, gas discharges, graphite furnaces or novel types of microscopy to make visible cellular structures of living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Scott, A. Strasheim, Time-resolved direct-reading spectrochemical analysis using a laser source with medium pulse-repetition rate. Spectrochim. Acta 26B, 707–719 (1971)

    Article  ADS  Google Scholar 

  2. J. Belliveau, L. Cadwell, K. Coleman, L. Hüwel, H. Griffin, Laser-induced breakdown spectroscopy of steels at atmospheric pressure and in air. Appl. Spectrosc. 39, 727–729 (1985)

    Article  ADS  Google Scholar 

  3. J. Millard, R. Dalling, L. Radziemski, Time-resolved laser-induced breakdown spectrometry for the rapid determination of beryllium in beryllium–copper alloys. Appl. Spectrosc. 40, 491–494 (1986)

    Article  ADS  Google Scholar 

  4. D. Cremers, The analysis of metals at a distance using laser-induced breakdown spectroscopy. Appl. Spectrosc. 41, 572–579 (1987)

    Article  ADS  Google Scholar 

  5. J. Henning, Der Spektralapparat Kirchhoffs und Bunsens (Deutsches Museum, Verlag für Geschichte der Naturwissenschaften und der Technik, Berlin, 2003)

    Google Scholar 

  6. R. Noll, Laser-Induced Breakdown Spectroscopy—Fundamentals and Applications (Springer, Berlin, 2012), ISBN 978-3-642-20667-2, 543 p

    Google Scholar 

  7. H. Carslaw, J. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, Oxford, 1959) reprint 2000, ISSBN 0 19 853368 3

    Google Scholar 

  8. R. Klein, Bearbeitung von Polymerwerkstoffen mit infraroter Laserstrahlung, Dissertation, Aachen, 1990

    Google Scholar 

  9. VDI-Wärmeatlas, Springer-Verlag, Berlin, 11. Aufl., 2013, ISBN 978-3-642-19980-6, 1760 p.

    Google Scholar 

  10. R. Wester, Laserinduziertes Abdampfen als Basisprozess des Bohrens, Fräsens und Schneidens, Laser und Optoelektronik 23, 60–63 (1991)

    Google Scholar 

  11. E. Beyer, Einfluss des laserinduzierten Plasmas beim Schweißen mit CO2-Lasern. Schweißtechnische Forschungsberichte, Bd. 2, Düsseldorf, Deutscher Verlag für Schweißtechnik, 1985

    Google Scholar 

  12. N. Damany, J. Romand, B. Vodar (ed.), Vacuum Ultraviolet Radiation Physics (Pergamon Press, New York, 1974) ISBN 0-08-016984-8

    Google Scholar 

  13. A. Zaidel, V. Prokofev, S. Raiskii, V. Slavnyi, E. Shreider, Tables of Spectral Lines (IFI/Plenum, New York, 1970), 782 p.

    Google Scholar 

  14. W. Wiese, M. Smith, B. Glennon, Atomic Transition Probabilities, vol. I, II. National Standard Reference Data Series. (National Bureau of Standards 4, Washington, 1966)

    Google Scholar 

  15. NIST atomic spectra database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  16. P. Smith, C. Heise, J. Esmond, R. Kurucz, Atomic Spectral Line Database, ed. by R.L. Kurucz. CD-ROM 23, http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html

  17. R. Noll, R. Wester, Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy. J. Appl. Phys. 106, 123302 (2009)

    Article  ADS  Google Scholar 

  18. L. Radziemski, T. Loree, D. Cremers, H. Hoffmann, Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55, 1246–1252 (1983)

    Article  Google Scholar 

  19. R. Noll, I. Mönch, O. Klein, A. Lamott, Concept and performance of inspection machines for industrial use based on LIBS. Spectrochim. Acta B 60, 1070–1075 (2005)

    Article  ADS  Google Scholar 

  20. C. Gehlen, J. Makowe, R. Noll, Automatisierte Verwechslungsprüfung von Edelstahl-halbzeugen in der Produktion. stahl und eisen 129, S70–S72 (2009)

    Google Scholar 

  21. International Standard, Safety of Laser Products—Part 1: Equipment Classification and Requirements, 200 p. IEC 60825-1, Ed. 2.0, (2007)

    Google Scholar 

  22. German Standard, Technical Availability of Machines and Production Lines, Terms, Definitions, Determination of Time Periods and Calculation. VDI 3423, January 2002

    Google Scholar 

  23. H. Kunze, R. Noll, J. Hertzberg, R. Sattmann, Laser-Stoffanalytik, Proc. 10. Int. Kongresses Laser 91 Optoelektronik (Springer-Verlag, Berlin, 1992), pp. 181–185

    Google Scholar 

  24. R. Noll, C. Fricke-Begemann, P. Jander, T. Kuhlen, V. Sturm, P. Werheit, J. Makowe, Perspektiven der Lasertechnik zur Steigerung der Ressourceneffizienz, Hrsg. U. Teipel, Rohstoffeffizienz und Rohstoffinnovation, Fraunhofer Verlag, 2010, S. 287–298

    Google Scholar 

  25. R. Noll, V. Sturm, C. Fricke-Begemann, P. Werheit, J. Makowe, Laser-induced breakdown spectroscopy—new perspectives for in-line analysis of materials. Metall. Anal. 30, 22–30 (2010)

    Google Scholar 

  26. P. Werheit, C. Fricke-Begemann, M. Gesing, R. Noll, Fast single piece identification with a 3D scanning LIBS for aluminium cast and wrought alloys recycling. J. Anal. At. Spectrom. 26, 2166–2174 (2011)

    Article  Google Scholar 

  27. K. Pilz, Online-Analytik zur Prozesskontrolle in der voestalpine Stahl GmbH. Berg- und Hüttenmännische Monatshefte (BHM) 157, 250–257 (2012)

    Article  Google Scholar 

  28. V. Sturm, R. Fleige, M. de Kanter, R. Leitner, K. Pilz, D. Fischer, G. Hubmer, R. Noll, Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works. Anal. Chem. (2014). DOI: 10.1021/ac5022425

  29. R. Noll, R. Sattmann, Lasergestützte Stoffanalyse für die online Prüfung von Oberflächenschichten, Proc. Surtec Berlin 1991, Ed. Deutsche Forschungsgemeinschaft für Oberflächenbehandlung, Düsseldorf, 1991, S. 367–374

    Google Scholar 

  30. H. Bette, R. Noll, High-speed laser-induced breakdown spectrometry for scanning microanalysis. J. Phys. D Appl. Phys. 37, 1281–1288 (2004)

    Article  ADS  Google Scholar 

  31. H. Bette, R. Noll, G. Müller, H.-W. Jansen, Ç. Nazikkol, H. Mittelstädt, High-speed scanning laser-induced breakdown spectroscopy at 1000 Hz with single pulse evaluation for the detection of inclusions in steel. J. Laser Appl. 17, 183–190 (2005)

    Article  Google Scholar 

  32. H. Bette, R. Noll, High-speed, high-resolution LIBS using diode-pumped solid-state lasers, Laser-Induced Breakdown Spectroscopy, Chap. 14, ed. by A. Miziolek, V. Palleschi, I. Schechter (Cambridge University Press, Cambridge, 2006), pp. 490–515

    Google Scholar 

  33. F. Boué-Bigne, Analysis of oxide inclusions in steel by fast laser-induced breakdown spectroscopy scanning: an approach to quantification. Appl. Spectrosc. 61, 333–337 (2007)

    Article  ADS  Google Scholar 

  34. F. Boué-Bigne, Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization. Spectrochimica Acta Part B 63, 1122–1129 (2008)

    Article  ADS  Google Scholar 

  35. V. Sturm, J. Vrenegor, R. Noll, M. Hemmerlin, Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 19, 451–456 (2004)

    Article  Google Scholar 

  36. H. Balzer, M. Hoehne, R. Noll, V. Sturm, New approach to monitoring the Al depth profile of hot-dip galvanised sheet steel online using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 385, 225–233 (2006)

    Article  Google Scholar 

  37. H. Balzer, M. Hoehne, V. Sturm, R. Noll, Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy. Spectrochimica Acta B 60, 1172–1178 (2005)

    Article  ADS  Google Scholar 

  38. H. Balzer, S. Hölters, V. Sturm, R. Noll, Systematic line selection for online coating thickness measurements of galvanised sheet steel using LIBS. Anal. Bioanal. Chem. 385, 234–239 (2006)

    Article  Google Scholar 

  39. M. Scharun, C. Fricke-Begemann, R. Noll, Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks—a comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus. Spectrochimica Acta Part B 87, 198–207 (2013)

    Article  ADS  Google Scholar 

  40. R. Measures (ed.), Laser Remote Chemical Analysis (Wiley, New York, 1988)

    Google Scholar 

  41. C. Weitkamp, W. Lahmann, W. Staehr, Reichweite- und Empfindlichkeitsoptimierung beim DAS-LIDAR. Laser u. Optoelektronik 19, 375–381 (1987)

    Google Scholar 

  42. Y. Carts, LIDAR proves useful in studies of the environment. Laser Focus World 11, 53–66 (1991)

    ADS  Google Scholar 

  43. T. McGee, D. Whiteman, R. Ferrare, J. Butler, J. Burris, STORZ LITE: NASA Goddard stratospheric ozone LIDAR trailer experiment. Opt. Eng. 30, 31–39 (1991)

    Article  ADS  Google Scholar 

  44. H. Claude, Ozonmessung mittels LIDAR am Hohenpeißenberg, Proc. 10. Int. Kongr. Laser ´89 Optoelektronik, Springer Verlag, Berlin, 1990, 408–411

    Google Scholar 

  45. H. Kölsch, P. Lambelet, H. Limberger, P. Rairoux, S. Recknagel, J. Wolf, L. Wöste, LIDAR-pollution monitoring of the atmosphere, Proc. 10. Int. Kongr. Laser ´89 Optoelektornik, Springer Verlag, Berlin, 1990, 412–415

    Google Scholar 

  46. R. Dubinsky, LIDAR moves toward the 21st century. Laser Optron. 4, 92–106 (1988)

    Google Scholar 

  47. A. Beck, J. Fricke, LIDAR-Systeme erfassen atmosphärischen Aerosolgehalt. Physik in unserer Zeit 21, 81–83 (1990)

    Article  ADS  Google Scholar 

  48. C. Weitkamp (ed.), LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, New York, 2005), 455 p

    Google Scholar 

  49. D. Lajas, P. Ingmann, T. Wehr, A. Ansmann, Aerosols and clouds: improved knowledge through space borne LIDAR measurements, in 3rd Symposium on LIDAR Atmospheric Applications, P1.17, 4 p., 2007

    Google Scholar 

  50. J. Carter, K. Schmid, K. Waters, L. Betzhold, B. Hadley, R. Mataosky, J. Halleran, Lidar 101: An Introduction to LIDAR Technology, Data, and Applications (National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, Charleston, 2012), 76 p.

    Google Scholar 

  51. R. Hall, A. Eckbreth, Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics, in Laser Applications, vol. V, ed. by J. Ready, R. Erf (Academic Press, New York, 1984), pp. 213–309

    Google Scholar 

  52. J. Hertzberg, Einsatz der CARS-Spektroskopie zur Untersuchung einer CO2-Laser-gasentladung, Dissertation, RWTH Aachen University, 1993

    Google Scholar 

  53. D. Brüggemann, J. Hertzberg, B. Wies, Y. Waschke, R. Noll, K. Knoche, G. Herziger, Test of an optical parametric oscillator (OPO) as a compact and fast tunable Stokes source in coherent anti-Stokes Raman spectroscopy (CARS). Appl. Phys. B 55, 378–380 (1992)

    Article  ADS  Google Scholar 

  54. I. Plath, CARS-Temperaturmessungen an laminaren und turbulenten Flammen - Untersuchung der Messgenauigkeit des Einzelpulsverfahres, Dissertation, University Stuttgart, 1991

    Google Scholar 

  55. C. Rieck, B. Bödefeld, R. Noll, G. Edwards, S. Boyes, M. Péalat, P. Bouchardy, N. Dorwal, J. Fischer, M. Stock, Development of a transfer standard for laser thermometry. SPIE Vol. 3107, 74–85 (1997)

    Article  ADS  Google Scholar 

  56. D. Brüggemann, Entwicklung der CARS-Spektroskopie zur Untersuchung der Verbrennung im Otto-Motor, Dissertation, RWTH Aachen University, 1989

    Google Scholar 

  57. B. Welz, M. Sperling, G. Schlemmer, N. Wenzel, G. Marowsky, Spatially and temporally resolved gas phase temperature measurements in a Massmann-type graphite tube furnace using coherent anti-Stokes Raman scattering. Spectrochim. Acta, Part B 43, 1187–1207 (1988)

    Article  ADS  Google Scholar 

  58. J. Hertzberg, R. Noll, P. Loosen, G. Herziger, Spatially resolved temperature measurements in a carbon-dioxide-laser discharge by folded BOXCARS, in Proceedings of XI European CARS Workshop, ed. by F. Castelucci, World Scientific Publishing, (1992), pp. 109–114

    Google Scholar 

  59. A. Zumbusch, A. Volkmer, Einblick in das Unsichtbare – Nichtlineare optische Phänomene ermöglichen die chemisch selektive Mikroskopie ohne Anfärbung. Physik Journal 4, 31–37 (2005)

    Google Scholar 

  60. A. Volkmer, J. Cheng, X. Xie, Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett. 87, 23901–23904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donges, A., Noll, R. (2015). Laser Spectroscopy. In: Laser Measurement Technology. Springer Series in Optical Sciences, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43634-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43634-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43633-2

  • Online ISBN: 978-3-662-43634-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics