Advertisement

Laser Doppler Methods

  • Axel Donges
  • Reinhard NollEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 188)

Abstract

Laser Doppler methods are used to measure the state of motion of objects and particles. Laser vibrometers and laser anemometers make use of this effect. Their interferometric principle is explained which allows to determine velocities and to discriminate as well the direction of movement. Signal processing schemes are described such as frequency demodulation, digital signal processing, tracker and photon correlators. Examples of applications as the measurement of the three dimensional vibration state of car bodies and flow fields in wind tunnels are presented.

Keywords

Angular Frequency Interference Fringe Reference Beam Object Point Holographic Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O. Zinke, H. Brunswig, Lehrbuch der Hochfrequenztechnik (Springer, Berlin, 1965)CrossRefGoogle Scholar
  2. 2.
    P. Buchhave, Laser Doppler velocimeter with variable optical frequency shift. Opt. Laser Technol. 7, 11–16 (1975)CrossRefADSGoogle Scholar
  3. 3.
    H. Meinke, F. Gundlach, Taschenbuch der Hochfrequenztechnik. 5. Aufl., (Springer, Berlin, 1992)Google Scholar
  4. 4.
    M. Johansmann, G. Siegmund, M. Pineda, Targeting the limits of laser Doppler vibrometry, in Proceedings of the International Disk Drive Equipment and Materials Association, 2005, pp. 1–12Google Scholar
  5. 5.
    A. Lewin, F. Mohr, H. Selbach, Heterodyn-Interferometer zur Vibrationsanalyse. Tech. Mess. 57, 335–345 (1990)CrossRefGoogle Scholar
  6. 6.
    B. Stoffregen, Flächenabtastendes Laser-Doppler-Schwingungsanalysesystem. Tech. Mess. 51, 394–397 (1984)CrossRefGoogle Scholar
  7. 7.
    G. Righini, A. Tajani, A. Cutolo (eds.), An Introduction to Optoelectronic Sensors. Series in Optics and Photonics, vol. 7 (World Scientific Publishing, Hackensack, 2009)Google Scholar
  8. 8.
    B. Halkon, S. Rothberg, Vibration measurements using continuous scanning laser Doppler vibrometry: theoretical velocity sensitivity analysis with applications. Meas. Sci. Technol. 14, 382 (2003). doi: 10.1088/0957-0233/14/3/318 CrossRefADSGoogle Scholar
  9. 9.
    B. Junge, Experiences with scanning laser vibrometry in automotive industries, in Proceedings of SPIE 2358, First International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, vol. 377 (1994), doi: 10.1117/12.185348
  10. 10.
    P. Castellini, G. Revel, E. Tomasini, Laser Doppler vibrometry: a review of advances and applications. Shock Vib. Dig. 30, 443–456 (1998)CrossRefGoogle Scholar
  11. 11.
    A. Stanbridge, D. Ewins, Modal testing using a scanning laser Doppler vibrometer. Mech. Syst. Signal Process. 13, 256–270 (1999)CrossRefADSGoogle Scholar
  12. 12.
    P. Castellini, M. Martarelli, E. Tomasini, Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 20, 1265–1285 (2006)CrossRefADSGoogle Scholar
  13. 13.
    K. Tatar, M. Rantatalo, P. Gren, Laser vibrometry measurements of an optically smooth rotating spindle. Mech. Syst. Signal Process. 21, 1739–1745 (2007)CrossRefADSGoogle Scholar
  14. 14.
    S. Aye, Statistical approach for tapered bearing fault detection using different methods, in Proceedings of World Congress on Engineering 2011, vol. III, ISBN 978-988-19251-5-2, 2112-2115Google Scholar
  15. 15.
    G. Bissinger, D. Oliver, 3-D laser vibrometry on legendary old Italian violins. Sound Vib. 41(7), 10–14 (2007)Google Scholar
  16. 16.
    B. Ruck, Lasermethoden in der Strömungsmesstechnik (AT-Fachverlag, Stuttgart, 1990)Google Scholar
  17. 17.
    F. Durst, A. Melling, J. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic Press, London, 1976)Google Scholar
  18. 18.
    B. Ruck, Laser Doppler anemometry—a nonintrusive optical measuring technique for fluid velocity. Part. Charact. 4, 26–37 (1987)CrossRefGoogle Scholar
  19. 19.
    C. Tropea, Laser Doppler anemometry—recent developments and future challenges. Meas. Sci. Technol. 6, 605–619 (1995)CrossRefADSGoogle Scholar
  20. 20.
    N. Lawson, The application of laser measurement techniques to aerospace flows, in Proceedings of the Institute of Mechanical Engineering. Part G, J. Aerosp. Eng. 218, 33–57 (2004)Google Scholar
  21. 21.
    M. Campbell, J. Cosgrove, C. Greated, S. Jack, D. Rockliff, Review of LDA and PIV applied to the measurement of sound and acoustic streaming. Opt. Laser Technol. 32, 629–639 (2000)CrossRefADSGoogle Scholar
  22. 22.
    T. Charret, S. James, R. Tatam, Optical fibre laser velocimetry: a review, Meas. Sci. Technol. 23(032001), (2012), 32 pp.Google Scholar
  23. 23.
    Strömungsmessung mit dem Laser, Info-Börse Laser 1990, Ed. VDI Technologiezentrum Physikalische Technologien, DüsseldorfGoogle Scholar
  24. 24.
    P. Witze, Flow Lines (Publishing TSI Incorporated, USA, 1989)Google Scholar
  25. 25.
    W. Schwenzfeier, F. Kawa, Laseroptisches Geschwindigkeitsmessen beim Stranggiesen von Stahl. Laser u. Optoelektronik 18, 29–32 (1986)Google Scholar
  26. 26.
    X. Lan, J. Khodadadi, F. Shen, Evaluation of six k–ε turbulence model predictions of flow in a continuous casting billet-mold water model using laser Doppler velocimetry measurements. Metall. Mater. Trans. B 28B, 321–332 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.nta Hochschule Isny—University of Applied SciencesIsnyGermany
  2. 2.Fraunhofer-Institut für LasertechnikAachenGermany

Personalised recommendations