Gluconic Acid as a New Green Solvent for Recovery of Polysaccharides by Clean Technologies

  • Juan Carlos Contreras-Esquivel
  • Maria-Josse Vasquez-Mejia
  • Adriana Sañudo-Barajas
  • Oscar F. Vazquez-Vuelvas
  • Humberto Galindo-Musico
  • Rosabel Velez-de-la-Rocha
  • Cecilia Perez-Cruz
  • Nagamani Balagurusamy
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The gluconic acid is an inexpensive and bio-based organic compound with new insights to drive growth in the eco-friendly industries. In organic chemistry, the gluconic acid is considered as a sustainable medium for organic reactions; meanwhile, natural product technologies suggest their potential as green solvents for extraction. In this chapter, advances of use of gluconic acid as a green solvent are presented in combination with green technologies for production of polysaccharides from biomasses from animal (chitin), microbial (chitosan-glucan), or vegetal (pectin) origins. Furthermore, this weak organic acid is capable of depolymerizing chitosan under microwave radiation for the production of water-soluble chitosan. The use of gluconic acid in combination with biomasses and clean technologies offers new green processes for the production of specialty polysaccharides and its derivatives under environmentally friendly process.


Microwave Heating Gluconic Acid Neutral Sugar Shrimp Shell Shrimp Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their gratefulness to the Mexican National Council for Science and Technology (CONACyT) for postdoctoral fellowship program to Oscar Fernando Vazquez Vuelvas and master in science scholarship to Cecilia Perez Cruz.


  1. 1.
    Barber PS, Shamshina JL, Rogers RD (2013) A “green” industrial revolution: using chitin towards transformative technologies. Pure Appl Chem 85:1693–1701CrossRefGoogle Scholar
  2. 2.
    Hirano S (1996) Chitin biotechnology applications. Biotechnol Annu Rev 2:237–258CrossRefGoogle Scholar
  3. 3.
    Dey PM, Brinson K (1984) Plant cell-walls. Adv Carbohydr Chem Biochem 42:265–382CrossRefGoogle Scholar
  4. 4.
    Hernandez-Carmona G, Freile-Pelegrin Y, Hernandez-Garibay E (2013) Conventional and alternative technologies for the extraction of algal polysaccharides. In: Functional ingredients from algae for foods and nutraceuticals. Woodhead Published Limited, Cambridge, pp 475–516CrossRefGoogle Scholar
  5. 5.
    Panchev IN, Kirtchev NA, Kratchanov C (1989) Kinetic model of pectin extraction. Carbohydr Polym 11:193–204CrossRefGoogle Scholar
  6. 6.
    Sakai T, Sakamoto T, Hallaert J, Vandamme E (1993) Pectin, pectinase and protopectinase: production, properties and applications. Adv Appl Microbiol 39:213–294CrossRefGoogle Scholar
  7. 7.
    Contreras-Esquivel JC, Espinoza-Pérez JD, Aguilar CN, Montañez JC, Charles-Rodríguez A, Renovato J, Aguilar CN, Rodríguez-Herrera R, Wicker L (2006) Extraction and characterization of pectin from novel sources. In: Advances in biopolymers, molecules, clusters, networks and interactions, ACS symposium series. American Chemical Society, Washington, DC, pp 215–227Google Scholar
  8. 8.
    Kurita O, Fujiwara T, Yamazaki E (2008) Characterization of the pectin extracted from citrus peel in the presence of citric acid. Carbohydr Polym 74:725–730CrossRefGoogle Scholar
  9. 9.
    Contreras-Esquivel JC, Aguilar CN, Montanez JC, Brandelli A, Espinoza-Perez JD, Renard CMGC (2010) Pectin from passion fruit fiber and its modification by pectinmethylesterase. J Food Sci Nutr 15:57–66CrossRefGoogle Scholar
  10. 10.
    Vasquez-Mejia MJ (2013) Recovery and characterization of pectic polysaccharides by employ of emergent technologies from tejocote pulp and citrus, pomegranate and mango peels. BSc thesis, School of Chemistry, Universidad Autonoma de Coahuila, SaltilloGoogle Scholar
  11. 11.
    Ma S, Yu SJ, Zheng XI, Wang XX, Bao QD, Guo XM (2013) Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr Polym 98:750–753CrossRefGoogle Scholar
  12. 12.
    Jensen SV, Sorensen SO, Rolin C (2012) Process for extraction of pectin. US Patent 20120309946 A1Google Scholar
  13. 13.
    Valdez-Peña AU, Espinoza-Perez JD, Sandoval-Fabian GC, Balagurusamy N, Hernandez-Rivera A, De-la-Garza-Rodriguez IM, Contreras-Esquivel JC (2010) Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci Biotechnol 19:553–557CrossRefGoogle Scholar
  14. 14.
    Contreras-Esquivel JC (2012) Obtainment of chitin from shrimp waste by means of microwaves and/or autoclaving in combination with organic acids in a single stage. Mexican Patent 298224, Mar 2009Google Scholar
  15. 15.
    Onda A, Ochi T (2008) A new chemical process for catalytic conversion of D-glucose into lactic acid and gluconic acid. Appl Catal A 343:49–54CrossRefGoogle Scholar
  16. 16.
    Le ZP, Wang LL, Huang XG, Huang YQ (2011) Study on the oxidation of glucose to gluconic acid by ozone under microwave. J Nanchang Univ (Eng & Technol) 33:217–221Google Scholar
  17. 17.
    Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X (2012) Novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 7:e31693CrossRefGoogle Scholar
  18. 18.
    Hustede H, Haberstroh HJ, Schinzig E (2005) Gluconic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1–9Google Scholar
  19. 19.
    Werpy T, Petersen G (2010) Top value added chemical from biomass: volume 1 – results of screening potential candidates from sugar and synthesis gas. In: Pacific Northwest National Laboratory and the National renewable Energy Laboratory, U.S. Department of Energy. Accessed 20 Feb 2014
  20. 20.
    Zhou B, Yang J, Li M, Gu Y (2011) Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chem 13:2204–2211CrossRefGoogle Scholar
  21. 21.
    Yang J, Zhou BH, Li MH, Gu YL (2013) Gluconic acid aqueous solution: a task-specific bio-based solvent for ring-opening reactions of dihydropyrans. Tetrahedron 69:1057–1064CrossRefGoogle Scholar
  22. 22.
    Perez-Cruz C (2013) Use of biomass of Aspergillus niger using enzymatic hydrolysis and heating assisted by microwaves. MSc thesis, School of Chemistry, Universidad Autonoma de Coahuila, SaltilloGoogle Scholar
  23. 23.
    Richter G, Heinecker H (1979) Conversion of glucose into gluconic acid by means of immobilized glucose oxidase. Starch-Starke 31:418–422CrossRefGoogle Scholar
  24. 24.
    Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195Google Scholar
  25. 25.
    Lemeune S, Barbe JM, Trichet A, Guilard R (2000) Degradation of cellulose models during an ozone treatment. Ozonation of glucose and cellobiose with oxygen or nitrogen as carrier gas at different pH. Ozone-Sci Eng 22:447–460CrossRefGoogle Scholar
  26. 26.
    Singh O, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722CrossRefGoogle Scholar
  27. 27.
    Onda A, Ochi T, Yanagisawa K (2011) New direct production of gluconic acid from polysaccharides using a bifunctional catalyst in hot water. Catal Commun 12:421–425CrossRefGoogle Scholar
  28. 28.
    Novalic S, Kongbangkerd T, Kulbe KD (1997) Separation of gluconate with conventional and bipolar electrodialysis. Desalination 114:45–50CrossRefGoogle Scholar
  29. 29.
    May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99CrossRefGoogle Scholar
  30. 30.
    Hwang JK, Kokini JL (1995) Changes in solution properties of pectins by enzymatic hydrolysis of sidechains. J Korean Soc Food Sci Nutr 24:389–395Google Scholar
  31. 31.
    Marry M, McCann MC, Kolpak F, White AR, Stacey NJ, Roberts K (2000) Extraction of pectic polysaccharides from sugar-beet cell walls. J Sci Food Agric 80:17–28CrossRefGoogle Scholar
  32. 32.
    Hoefler AC (1999) Pectin: chemistry, functionality and applications. Hercules Inc., WilmingtonGoogle Scholar
  33. 33.
    Schols HA, Coenen GJ, Voragen AGJ (2009) Revealing pectin’s structure. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, Wageningen, pp 17–33CrossRefGoogle Scholar
  34. 34.
    Ralet MC, Thibault JF (2009) Hydrodynamic properties of isolated pectin domains: a way to figure out pectin macromolecular structure. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, Wageningen, pp 35–48Google Scholar
  35. 35.
    Van Buren JP (1991) Function of pectin in plant tissue structure and firmness. In: Walter RH (ed) The chemistry and technology of pectin. Academic, San Diego, pp 1–23CrossRefGoogle Scholar
  36. 36.
    Hwang JK, Kim CJ, Kim CT (1998) Extrusion of apple pomace facilitates pectin extraction. J Food Sci 63:841–844CrossRefGoogle Scholar
  37. 37.
    Fishman ML, Chau HK, Hoagland PD, Hotchkiss AT (2006) Microwave-assisted extraction of lime pectin. Food Hydrocolloids 20:1170–1177CrossRefGoogle Scholar
  38. 38.
    Contreras-Esquivel JC, Hours RA, Aguilar CN, Reyes-Vega ML, Romero J (1997) Microbial and enzymatic extraction of pectin. A review. Arch Latinoam Nutr 47:208–216Google Scholar
  39. 39.
    Shkodina OG, Zeltser OA, Selivanov NY, Ignatov VV (1998) Enzymatic extraction of pectin preparations from pumpkin. Food Hydrocolloids 12:313–316CrossRefGoogle Scholar
  40. 40.
    Min B, Lim JB, Ko SH, Lee KG, Lee SH, Lee SY (2011) Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresour Technol 102:3855–3860CrossRefGoogle Scholar
  41. 41.
    Yu X, Sun D (2013) Microwave and enzymatic extraction of orange peel pectin. Asian J Chem 25:5333–5336Google Scholar
  42. 42.
    Rezzoug SA, Maache-Rezzoug Z, Sannier F, Karim A (2008) A thermomechanical preprocessing for pectin extraction from orange peel. Optimisation by response surface methodology. Int J Food Eng. doi: 10.2202/1556-3758.1183 Google Scholar
  43. 43.
    Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from flavedo and albedo of orange peels. Chem Eng J 120:203–220CrossRefGoogle Scholar
  44. 44.
    Huang G, Shi J, Zhang K, Huang X (2012) Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. J Anal Meth Chem. doi: 10.1155/2012/302059 Google Scholar
  45. 45.
    Yang HC, Hon MH (2010) The effect of degree of deacetylation of chitosan nanoparticles and its characterization and encapsulation efficiency on drug delivery. Polym-Plast Technol 49:1292–1296CrossRefGoogle Scholar
  46. 46.
    Flores R, Barrera-Rodriguez S, Shirai K, Duran-de-Bazua C (2007) Chitin sponge, extraction procedure from shrimp wastes using green chemistry. J Appl Polym Sci 104:3909–3916CrossRefGoogle Scholar
  47. 47.
    Aye KN, Stevens WF (2004) Improved chitin production by pretreatment of shrimp shells. J Chem Tech Biotechnol 79:421–425CrossRefGoogle Scholar
  48. 48.
    Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366CrossRefGoogle Scholar
  49. 49.
    Jo GH, Jung WJ, Kuk JH, Oh KT, Kim YJ, Park RD (2008) Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74:504–508CrossRefGoogle Scholar
  50. 50.
    Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods – a review. Food Technol Biotechnol 51:12–25Google Scholar
  51. 51.
    Kaur S, Dhillon S (2013) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol. doi: 10.3109/07388551.2013.798256 Google Scholar
  52. 52.
    Gildberg A, Stenberg E (2001) A new process for advanced utilization of shrimp waste. Process Biochem 36:809–812CrossRefGoogle Scholar
  53. 53.
    Jung WJ, Jo GH, Kuk JH, Ki KY, Park RD (2005) Demineralization of crab shells by chemical and biological treatments. Biotechnol Bioprocess Eng 10:67–72CrossRefGoogle Scholar
  54. 54.
    Kwon KN, Choi HS, Cha BS (2009) Effect of microwave and ultrasonication on chitin extraction time. Korea J Food & Nutr 22:8–13Google Scholar
  55. 55.
    Chen PH, Hwang YH, Kuo TY, Liu FH, Lai JY, Hsieh HJ (2007) Improvement in the properties of chitosan membranes using natural organic acid solutions as solvents. J Med Biol Eng 27:23–28Google Scholar
  56. 56.
    Xia Z, Wu S, Chen J (2013) Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. J Biol Macromol 59:242–245CrossRefGoogle Scholar
  57. 57.
    Zivanovic S, Li JJ, Davidson M, Kit K (2007) Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 8:1505–1510CrossRefGoogle Scholar
  58. 58.
    Tian F, Liu Y, Hu K, Zhao B (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydr Polym 57:31–37CrossRefGoogle Scholar
  59. 59.
    Gouka R, Punt P, Van-den-Hondel C (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11CrossRefGoogle Scholar
  60. 60.
    Roukas T (2000) Citric and gluconic acid production from fig by Aspergillus niger using solid state fermentation. J Ind Microbiol Biotechnol 25:298–304CrossRefGoogle Scholar
  61. 61.
    Schuster E, Dunn-Coleman N, Frisvad J, Van-Dijck M (2002) On the safety of Aspergillus niger. Appl Microbiol Biotechnol 59:426–435CrossRefGoogle Scholar
  62. 62.
    Cai J, Yang J, Du Y, Fan L, Qiu Y, Li J, Kennedy JF (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 64:151–157CrossRefGoogle Scholar
  63. 63.
    Muzzarelli R, Boudrant J, Meyer D, Manno N, Demarcáis M, Paoletti M (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012CrossRefGoogle Scholar
  64. 64.
    Ruiz-Herrera J (2012) Cell wall composition. In: Group TF (ed) Fungal cell wall structure, synthesis, and assembly, 2nd edn. CRC Press, Boca Raton, pp 7–21CrossRefGoogle Scholar
  65. 65.
    Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522CrossRefGoogle Scholar
  66. 66.
    Kogan G, Rauko P, Machova E (2003) Fungal chitin–glucan derivatives exert protective or damaging activity on plasmid DNA. Carbohydr Res 338:931–935CrossRefGoogle Scholar
  67. 67.
    Fleet GH, Phaff HJ (1981) Fungal glucans-structure and metabolism. In: Tanner W, Loewus F (eds) Encyclopedia of plant physiology new series. Springer, Berlin, pp 416–440Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan Carlos Contreras-Esquivel
    • 1
    • 2
  • Maria-Josse Vasquez-Mejia
    • 1
    • 2
  • Adriana Sañudo-Barajas
    • 3
  • Oscar F. Vazquez-Vuelvas
    • 4
  • Humberto Galindo-Musico
    • 1
  • Rosabel Velez-de-la-Rocha
    • 3
  • Cecilia Perez-Cruz
    • 1
  • Nagamani Balagurusamy
    • 5
  1. 1.Laboratory of Applied Glycobiotechnology, Food Research Department, School of ChemistryUniversidad Autonoma de CoahuilaSaltilloMexico
  2. 2.Research and Development CenterCoyotefoods Biopolymer and Biotechnology Co.SaltilloMexico
  3. 3.Laboratory of Food BiochemistryCentro de Investigación en Alimentacion y Desarrollo (CIAD)-ACCuliacanMexico
  4. 4.School of ChemistryUniversidad de ColimaCoquimatlanMexico
  5. 5.School of Biological SciencesUniversidad Autonoma de CoahuilaTorreonMexico

Personalised recommendations