Skip to main content

Mutual Behavioral Adjustment in Vibrational Duetting

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Animal communication often involves a back-and-forth of influence between the sexes. Not only do males produce signals to court females–females often reply back, as is the case in many plant-feeding insects. Here, we explore the behavioral complexity that arises from these interactions. We examine the potential for substrate-borne vibrational duetting insects to serve as case studies of the evolution and evolutionary consequences of mutual influence between the sexes, including mutual mate choice. Female mate choice on the basis of male signals has been documented in several species of insects that communicate via substrate-borne vibration, but it is less clear how often males modify their behavior (up to and including male mate choice) on the basis of variation in female vibrational signals. We assessed the potential for the signals of one sex to influence the behavior of the other sex with a literature review in which we compared the signals used by males and females in vibrational duetting. We found that female signals were at least as long and variable as male signals, although male signals often had more components than female signals. Thus, it seems likely that female vibrational duetting behavior is involved in proximate and evolutionary dynamics involving mutual influence and stimulation between the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amundsen T (2000) Why are female birds ornamented? Trends Ecol Evol 15:149–155

    Article  PubMed  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Bailey WJ (2003) Insect duets: underlying mechanisms and their evolution. Physiol Entomol 28:157–174

    Article  Google Scholar 

  • Bailey WJ, Hammond TJ (2003) Duetting in insects—does call length influence reply latency? J Zool 260:267–274

    Article  Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol Rev 76:305–339

    Article  CAS  PubMed  Google Scholar 

  • Catania KC (2008) Worm grunting, fiddling, and charming—humans unknowingly mimic a predator to harvest bait. PLoS ONE 3:e3472

    Article  PubMed Central  PubMed  Google Scholar 

  • Cator LJ, Arthur BJ, Harrington LC, Hoy RR (2009) Harmonic convergence in the love songs of the dengue vector mosquito. Science 323:1077–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clutton-Brock TH (2007) Sexual selection in males and females. Science 318:1882–1885

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH (2009) Sexual selection in females. Anim Behav 77:3–11

    Article  Google Scholar 

  • Clutton-Brock TH, Hodge SJ, Spong G, Russell AF, Jordan NR, Bennett NC, Sharpe LL, Manser MB (2006) Intrasexual competition and sexual selection in cooperative mammals. Nature 444:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Cocroft RB (2003) The social environment of an aggregating, ant-tended treehopper (Hemiptera: Membracidae: Vanduzea arquata). J Insect Behav 16:79–95

    Article  Google Scholar 

  • Cocroft RB (2011) The public world of insect vibrational communication. Mol Ecol 20:2041–2043

    Article  PubMed  Google Scholar 

  • Cocroft RB, De Luca P (2006) Size–frequency relationships in insect vibratory signals. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis Group, Boca Raton, FL, pp 99–110

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Cocroft RB, Rodríguez RL, Hunt RE (2008) Host shifts, the evolution of communication and speciation in the Enchenopa binotata complex of treehoppers. In: Tilmon K (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 88–100

    Google Scholar 

  • Cocroft RB, Rodríguez RL, Hunt RE (2010) Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biol J Linn Soc 99:60–72

    Article  Google Scholar 

  • Cokl A, Virant-Doberlet M, Stritih N (2000) Temporal and spectral properties of the songs of the southern green stink bug Nezara viridula (L.) from Slovenia. Eur J Physiol 439:R168–R170

    Article  CAS  Google Scholar 

  • Čokl A, McBrien HL, Millar JG (2001) Comparison of substrate-borne vibrational signals of two stink bug species, Acrosternum hilare and Nezara viridula (Heteroptera: Pentatomidae). Ann Entomol Soc Am 94:471–479

    Article  Google Scholar 

  • Cokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  CAS  PubMed  Google Scholar 

  • Conner WE, Corcoran AJ (2012) Sound strategies: the 65-million-year-old battle between bats and insects. Annu Rev Entomol 57:21–39

    Article  CAS  PubMed  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011) Search behaviour of two hemipteran species using vibrational communication. Cent Eur J Biol 8:756–769

    Article  Google Scholar 

  • Djemai I, Casas J, Magal C (2004) Parasitoid foraging decisions mediated by artificial vibrations. Anim Behav 67:567–571

    Article  Google Scholar 

  • Eberhard WG (1994) Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evolution 48:711–733

    Article  Google Scholar 

  • Eberhard WG (2007) Miniaturized orb–weaving spiders: behavioural precision is not limited by small size. Proc R Soc B 274:2203–2209

    Article  PubMed Central  PubMed  Google Scholar 

  • Elias DO, Botero CA, Andrade MCB, Mason A, Kasumovic MM (2010) High resource valuation fuels “desperado” fighting tactics in female jumping spiders. Behav Ecol 21:868–875

    Article  Google Scholar 

  • Evans TA, Inta R, Lai JCS, Prueger S, Foo NW, Fu EW, Lenz M (2009) Termites eavesdrop to avoid competitors. Proc R Soc B 276:4035–4041

    Article  PubMed Central  PubMed  Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defence and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141

    Article  Google Scholar 

  • Fletcher NH (1992) Acoustic systems in biology. Oxford University Press, New York

    Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  CAS  PubMed  Google Scholar 

  • Greenfield MD (2002) Signalers and receivers. Oxford University Press, New York

    Google Scholar 

  • Gwynne DT (1991) Sexual competition among females: what causes courtship–role reversal? Trends Ecol Evol 6:118–121

    Article  CAS  PubMed  Google Scholar 

  • Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B 274:453–464

    Article  PubMed Central  PubMed  Google Scholar 

  • Henry CS (1994) Singing and cryptic speciation in insects. Trends Ecol Evol 9:388–392

    Article  CAS  PubMed  Google Scholar 

  • Henry CS, Wells MLM (2006) Testing the ability of males and females to respond to altered songs in the dueting green lacewing, Chrysoperla plorabunda (Neuroptera: Chrysopidae). Behav Ecol Sociobiol 61:39–51

    Article  Google Scholar 

  • Henry CS, Mochizuki A, Nakahira K, Haruyama N, Nomura M (2009) Courtship songs of Chrysoperla nipponensis (Neuroptera: Chrysopidae) delineate two distinct biological species in eastern Asia. Ann Entomol Soc America 102:747–758

    Article  Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A (2013) Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol Rev 88:787–808

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hirschberger P, Rohrseitz K (1995) Stridulation in the adult dung beetle Aphodius ater (Coleoptera: Aphodiidae). Zoology (Jena) 99:97–102

    Google Scholar 

  • Kanmiya K, Sonobe R (2002) Records of two citrus pest whiteflies in Japan with special reference to their mating sounds (Homoptera: Aleyrodidae). Appl Entomol Zool 37:487–495

    Article  Google Scholar 

  • Kozak G, Reisland M, Boughman JW (2009) Sex differences in mate recognition and conspecific preference in species with mutual mate choice. Evolution 63:353–365

    Article  PubMed  Google Scholar 

  • Laumann RA, Moraes MCB, Cokl A, Borges M (2007) Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav 73:637–649

    Article  Google Scholar 

  • Mann NI, Dingess KA, Barker FK, Graves JA, Slater PJB (2009) A comparative study of song form and duetting in neotropical Thryothorus wrens. Behaviour 146:1–43

    Article  Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    Article  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Ioriatti C, Doberlet-Virant M, Anfora G (2010) Mating behavior of Hyalesthes obsoletus. Ann Entomol Soc Am 103:813–822

    Article  Google Scholar 

  • McBrien HL, Çokl A, Millar JG (2002) Comparison of substrate-borne vibrational signals of two congeneric stink bug species, Thyanta pallidovirens and T. custator accerra (Heteroptera: Pentatomidae). J Insect Behav 15:715–738

    Article  Google Scholar 

  • Mitra O, Callaham MA Jr, Smith ML, Yack JE (2009) Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from the soil. Biol Lett 5:16–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moraes MCB, Laumann RA, Cokl A, Borges M (2005) Vibratory signals of four Neotropical stink bug species. Physiol Entomol 30:175–188

    Article  Google Scholar 

  • Noh S, Henry CS (2010) Sexually monomorphic mating preferences contribute to premating isolation based on song in European green lacewings. Evolution 64:261–270

    Article  PubMed  Google Scholar 

  • Patricelli GL, Uy JAC, Walsh G, Borgia G (2002) Male displays adjusted to female’s response. Nature 415:279–280

    Article  CAS  PubMed  Google Scholar 

  • Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst 20:431–445

    Article  Google Scholar 

  • Percy DM, Boyd EA, Hoodle MS (2008) Observations of acoustic signaling in three sharpshooters: Homalodisca vitripennis, Homalodisca liturata, and Graphocephala atropunctata (Hemiptera: Cicadellidae). Ann Entomol Soc Am 101:253–259

    Article  Google Scholar 

  • Peretti A, Eberhard WG, Briceño RD (2006) Copulatory dialogue: female spiders sing during copulation to influence male genitalic movements. Anim Behav 72:413–421

    Article  Google Scholar 

  • Reinhold K (2011) Variation in acoustic signalling traits exhibits footprints of sexual selection. Evolution 65:738–745

    Article  PubMed  Google Scholar 

  • Rillich J, Buhl E, Schildberger K, Stevenson PA (2009) Female crickets are driven to fight by the male courting and calling songs. Anim Behav 77:737–742

    Article  Google Scholar 

  • Rodríguez RL (1998) Possible female choice during copulation in Ozophora baranowskii (Heteroptera: Lygaeidae). J Insect Behav 11:725–741

    Article  Google Scholar 

  • Rodríguez RL, Cocroft RB (2006) Divergence in female duetting signals in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Ethology 112:1231–1238

    Article  Google Scholar 

  • Rodríguez RL, Sullivan LE, Cocroft RB (2004) Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Evolution 58:571–578

    Article  PubMed  Google Scholar 

  • Rodríguez RL, Ramaswamy K, Cocroft RB (2006) Evidence that female preferences have shaped male signal evolution in a clade of specialized plant–feeding insects. Proc R Soc B 273:2585–2593

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez RL, Haen C, Cocroft RB, Fowler-Finn KD (2012) Males adjust signaling effort based on female mate–preference cues. Behav Ecol 23:1218–1225

    Article  Google Scholar 

  • Rodríguez RL, Boughman JW, Gray DA, Hebets EA, Höbel G, Symes LB (2013) Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences. Ecol Lett 16:964–974

    Google Scholar 

  • Rubenstein DR, Lovette IJ (2009) Reproductive skew and selection on female ornamentation in social species. Nature 462:786–790

    Article  CAS  PubMed  Google Scholar 

  • Sæther SA, Fiske P, Kålås JA (2001) Male mate choice, sexual conflict and strategic allocation of copulations in a lekking bird. Proc R Soc Lond B 268:2097–2102

    Article  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Google Scholar 

  • Slater PJB, Mann NI (2004) Why do the females of many bird species sing in the tropics? J Avian Biol 35:289–294

    Article  Google Scholar 

  • Sullivan-Beckers L, Cocroft RB (2010) The importance of female choice, male–male competition, and signal transmission as causes of selection on male mating signals. Evolution 64:3158–3171

    Article  PubMed  Google Scholar 

  • Sullivan-Beckers L, Hebets EA (2011) Modality-specific experience with female feedback increases the efficacy of courtship signalling in male wolf spiders. Anim Behav 82:1051–1057

    Article  Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 127–189

    Chapter  Google Scholar 

  • Virant-Doberlet M, Cokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Virant-Doberlet M, Žežlina I (2007) Vibrational communication of Metcalfa pruinosa (Say) (Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73–82

    Article  Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    Article  PubMed  Google Scholar 

  • Wells MLM, Henry CS (1998) Songs, reproductive isolation, and speciation in cryptic species of insects. In: Howard DJ, Berlocher SH (eds) Endless forms. Oxford University Press, New York, pp 217–233

    Google Scholar 

  • West-Eberhard MJ (1983) Sexual selection, social competition, and speciation. Q Rev Biol 58:155–183

    Article  Google Scholar 

  • Wood TK (1993) Speciation of the Enchenopa binotata complex (Insecta: Homoptera: Membracidae). In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic Press, New York, pp 299–317

    Google Scholar 

Download references

Acknowledgments

We thank Rex Cocroft and Gerlinde Höbel for discussion and constructive comments to the manuscript. Funding was provided in part by NSF grant IOS–1120790 to RLR and KD Fowler-Finn, and by University of Wisconsin–Milwaukee Research Grant Initiative grant 101x197 to Gerlinde Höbel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael L. Rodríguez .

Editor information

Editors and Affiliations

Appendix

Appendix

Mean and coefficient of variation for signal length and dominant frequency for males and females of the vibrational duetting species used in the analysis. A dash indicates that data were not available from the references given

Taxon

Sex

Call type

Call length

Dominant frequency

Number of components

References

   

Mean (s)

CV

Mean (Hz)

CV

  

C oleoptera

 Scarabaeidae

  Aphodius ater

F

0.06

19.2

Hirschberger and Rohrseitz (1995)

 

M

0.05

21.7

Hirschberger and Rohrseitz (1995)

H emiptera

 Aleyrodidae

  Aleurothrixus floccosus

F

Iriomote Island

0.28

21.57

300.6

1.99

1

Kanmiya and Sonobe (2002)

M

Iriomote Island

0.25

12.42

294.6

2.27

1

2002

F

Ishigaki Island

0.31

12.53

308.1

2.92

Kanmiya and Sonobe (2002)

M

Ishigaki Island

0.22

21.58

292.6

5.53

Kanmiya and Sonobe (2002)

 Cicadellidae

  Aphrodes makarovi

F

15.42

39.56

1

de Groot et al. (2011)

M

13.43

24.49

3

de Groot et al. (2011)

  Graphocephala atropunctata

F

0.51

25.24

203

31.53

Percy et al. (2008)

M

1.17

19.66

235

28.93

Percy et al. (2008)

  Homalodisca liturata

F

1.23

11.38

95

10.52

Percy et al. (2008)

M

1.26

7.143

95

10.52

Percy et al. (2008)

  Scaphoideus titanus

F

Call 1

150.5

32.29

1

Mazzoni et al. (2009)

F

Call 2

137.7

40.74

Mazzoni et al. (2009)

M

Call 1

6.2

30.64

158.8

27.01

3

Mazzoni et al. (2009)

M

Call 2

4.6

19.56

Mazzoni et al. (2009)

 Cixiidae

  Hyalesthes obsoletus

F

0.25

7.69

287

53.65

1

Mazzoni et al. (2010)

M

Syllable 1

0.17

11.36

576

41.14

2

Mazzoni et al. (2010)

M

Syllable 2

0.26

14.44

292

53.42

2

Mazzoni et al. (2010)

M

Syllable 3

0.29

14.96

447

34.67

2

Mazzoni et al. (2010)

M

Syllable 4

0.23

13.04

379

40.63

Mazzoni et al. (2010)

 Flatidae

  Metcalfa pruinosa

F

Call

2.34

22.22

463

23.11

Virant-Doberlet and Žežlina (2007)

M

Call

2.35

20

442

27.61

Virant-Doberlet and Žežlina (2007)

M

Phrase pulse train 1

4.31

31.55

414

27.05

Virant-Doberlet and Žežlina (2007)

M

Phrase pulse train 2

2.39

12.55

446

25.11

Virant-Doberlet and Žežlina (2007)

 Membracidae

  Enchenopa binotata ‘Celastrus’

F

0.7

18.7

215

5.4

1

Rodriguez and Cocroft 2006

M

0.52

15.43

451

7.97

2

Rodriguez and Cocroft (2006)

  Enchenopa binotata ‘Cercis’

F

0.79

24.8

118

26.9

1

Rodriguez and Cocroft (2006)

M

0.79

18.05

146

9.9

2

Rodriguez and Cocroft (2006)

  Enchenopa binotata ‘Ptelea’

F

0.61

18.2

167

6.6

1

Rodriguez and Cocroft (2006)

M

0.45

16.54

333

2.64

2

Rodriguez and Cocroft (2006)

  Enchenopa binotata   ‘Viburnum rufidulum’

F

0.84

26.3

329

58.4

1

Rodriguez and Cocroft (2006)

M

0.78

16.41

285

4.48

2

Rodriguez and Cocroft (2006)

 Pentatomidae

  Acrosternum hilare

F

Song

0.64

26.17

82

2.44

1

Cokl et al. (2001)

M

Call 1

0.94

0.53

120

6.66

2

Moraes et al. (2005)

M

Song 1

2.31

20.09

1

Moraes et al. (2005)

  Acrosternum impicticorne

F

Call 1

0.81

4.19

133

3.01

1

Moraes et al. (2005)

F

Call 2

1.13

16.82

109

5.51

1

Moraes et al. (2005)

M

Call 2

0.94

5.75

130

1.54

1

Moraes et al. (2005)

  Euschistus heros

F

Call 1

0.95

19.30

145

4.82

2

Moraes et al. (2005)

F

Call 2

5.66

21.15

157

4.46

1

Moraes et al. (2005)

M

Call 1

1.75

34.05

137

8.76

1

Moraes et al. (2005)

M

Call 2

4.41

13.20

136

9.56

1

Moraes et al. (2005)

M

Call 3

0.05

16.66

175

2.86

Moraes et al. (2005)

  Nezara viridula

F

Calling song broad band

0.13

35.15

109

Cokl et al. (2000)

F

Calling song narrow band

1.66

21.91

99

Cokl et al. (2000)

F

Courtship song

3.91

30.19

91

1

Cokl et al. (2000)

M

Calling song broad band

0.12

28.09

109

Cokl et al. (2000)

M

Calling song narrow band

0.26

36.5

96

Cokl et al. (2000)

M

Courtship song

3.11

24.08

90

1

Cokl et al. (2000)

  Piezodorus guildinii

F

Call 1

4.91

13.06

168

5.95

1

Moraes et al. (2005)

F

Call 2

4.63

4.32

131

1.52

1

Moraes et al. (2005)

M

Call 1

0.02

20.83

117

8.54

1

Moraes et al. (2005)

  Thyanta custator accerra

F

Song 1

0.34

19.28

102

3.92

1

McBrien et al. (2002)

F

Song 2

3.08

69.91

97

12.37

1

McBrien et al. (2002)

M

Song 1

0.46

36.77

97

7.21

1

McBrien et al. (2002)

M

Song 2

2.44

32.28

95

6.31

1

McBrien et al. (2002)

M

Song 3

9.89

30.55

98

8.16

1

McBrien et al. (2002)

M

Song 4

0.12

17.46

99

9.09

1

McBrien et al. (2002)

  Thyanta pallidovirens

F

Song 1

0.21

30.62

100

7

1

McBrien et al. (2002)

F

Song 2

3.41

39.37

105

4.76

1

McBrien et al. (2002)

M

Song 1

0.34

24.18

101

2.97

1

McBrien et al. (2002)

M

Song 2

3.36

20.27

96

5.21

1

McBrien et al. (2002)

  Thyanta perditor

F

Call 1

13.41

14.49

  

1

Moraes et al. (2005)

F

Call 2, long

1.46

43.09

84

4.76

2

Moraes et al. (2005)

F

Call 2, short

0.71

40.84

83

4.82

Moraes et al. (2005)

M

Call 1

7.1

9.80

122

12.29

1

Moraes et al. (2005)

M

Call 2

3.39

29.20

109

11.01

2

Moraes et al. (2005)

M

Call 3

2.11

21.80

70

10

Moraes et al. (2005)

 Triozidae

  Aacanthocnema dobsoni

F

0.24

8.33

925

4.64

1

Percy et al. (2006)

M

1.48

25.67

698

62.17

1

Percy et al. (2006)

  Schedotrioza apicobystra

F

0.75

10.66

499

23.64

1

Percy et al. (2006)

M

1.19

10.92

615

13.65

2

Percy et al. (2006)

  Schedotrioza distorta

F

0.23

17.39

315

36.82

1

Percy et al. (2006)

M

0.33

15.15

576

21.52

1

Percy et al. (2006)

  Schedotrioza marginata

F

0.34

8.82

614

9.44

1

Percy et al. (2006)

M

0.46

8.69

683

19.18

2

Percy et al. (2006)

  Schedotrioza multitudinea

F

0.3

13.33

602

9.63

1

Percy et al. (2006)

M

0.43

32.55

869

19.56

2

Percy et al. (2006)

  Schedotrioza, sp. nov.

F

0.7

10

268

73.13

Percy et al. (2006)

M

1.09

8.256

765

14.25

Percy et al. (2006)

  Trioza, sp. nov.

M

0.18

5.55

690

4.92

Percy et al. (2006)

  Trioza, sp. nov.

F

1.18

16.10

1096

0.82

Percy et al. (2006)

N europtera

 Chrysopidae

  Chrysoperla nipponensis type B

M

Site1

2.14

16.82

Henry et al. (2009)

  Chrysoperla nipponensis type B

F

Site1

1.99

19.09

Henry et al. (2009)

  Chrysoperla nipponensis type A

F

Site2

5.4

16.29

Henry et al. (2009)

Chrysoperla nipponensis type A

M

Site2

5.43

18.60

Henry et al. (2009)

O rthoptera

 Gryllacrididae

  Hadrogryllacris sp, undescribed species

F

0.8

27.5

1

Field and Bailey (1997)

M

0.45

22.22

1

Field and Bailey (1997)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez, R.L., Barbosa, F. (2014). Mutual Behavioral Adjustment in Vibrational Duetting. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_9

Download citation

Publish with us

Policies and ethics