Skip to main content

Vibrational Communication Networks: Eavesdropping and Biotic Noise

  • Chapter
  • First Online:
Studying Vibrational Communication

Abstract

In nature, communication predominantly occurs in a group of several conspecific and/or heterospecific individuals within signaling and receiving range of each other, i.e., in a network environment. Vibrational communication in the context of sexual behavior has been, in the past, usually considered as a private communication channel, free of potential competitors and eavesdropping predators or parasitoids and consequently only rarely studied outside an emitter–receiver dyad. We provide an overview of work related to vibrational communication in the presence of (a) environmental (abiotic) noise, (b) other conspecific and/or heterospecific signalers (biotic noise), (c) rivals and (d) exploiters (predators and parasitoids). The evidence gathered in the last few years shows that arthropods relying on substrate-borne vibrations communicate within a rich and complex vibrational world and reveals diverse interactions and mechanisms. Considering vibrational communication from a network perspective may allow us in the future to identify sources of selection pressures that cannot be recognized in a communication dyad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnarson BT, Hart LA, O’Connel-Rodwell CE (2002) The properties of geophysical fields and their effect on elephants and other animals. J Comp Psychol 116:123–132

    Google Scholar 

  • Aubin T, Jouventin P (2002) How to vocally identify kin in a crowd: the penguin model. Adv Stud Behav 31:243–277

    Google Scholar 

  • Bagwell GJ, Čokl A, Millar JG (2008) Characterization and comparison of substrate-borne vibrational signals of Chlorochroa uhleri, Clorochroa ligata and Chlorochroa sayi (Heteroptera: pentatomidae). Ann Entomol Soc Am 101:235–246

    Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. TREE 25:180–189

    PubMed  Google Scholar 

  • Barth FG (1998) The vibrational sense in spiders. In: Hoy RR, Popper AN, Pay R (eds) Comparative hearing: insects. Springer, New York, pp 228–278

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Google Scholar 

  • Bee MA, Micheyl C (2008) Cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    PubMed Central  PubMed  Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predations and its influence on calling behaviour in Neotropical katydids. Science 238:64–67

    CAS  PubMed  Google Scholar 

  • Blassioli Moraes MC, Laumann RA, Čokl A, Borges M (2005) Vibratory signals of four Neotropical stink bug species. Physiol Entomol 30:175–188

    Google Scholar 

  • Booij CJH (1982) Biosystematics of the Muellerianella complex (Homoptera, Delphacidae), interspecific and geographic variation in acoustic behaviour. Z Tierpsychol 58:31–52

    Google Scholar 

  • Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Amer Zool 41:1229–1240

    Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 55:151–209

    Google Scholar 

  • Burt JM, Vehrencamp SL (2005) Dawn chorus as an interactive communication network. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 320–343

    Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2009) Frequency information in the vibration-cued escape hatching of red-eyed treefrogs. J Exp Biol 212:566–575

    PubMed  Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2010) Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Anim Behav 79:255–260

    Google Scholar 

  • Casas J (1989) Foraging behaviour of a leafminer parasitoid in the field. Ecol Entomol 14:257–265

    Google Scholar 

  • Casas J, Magal C (2006) Mutual eavesdropping through vibrations in a host-parasitoid interaction: from plant biomechanics to behavioural ecology. In: Claridge MF, Drosopoulos S (eds) Insects sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 263–271

    Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhofer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11:147–153

    Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Google Scholar 

  • Cerveira AM, Jackson RR, Guseinov EF (2003) Stalking decisions of web-invading araneophagic jumping spiders from Australia, Azerbaijan, Israel, Kenya, Portugal and Sri lanka: the opportunistic smokescreen tactics of Brettus, Cocalus, Cyrba and Portia. New Zeal J Zool 30:21–30

    Google Scholar 

  • Chan AAY-H, Giraldo-Perez P, Smith S, Blumstein DT (2010a) Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett 6:456–461

    Google Scholar 

  • Chan AAY-H, Stahlman WD, Garlick D, Fast CD, Blumstein DT, Blaisdell AP (2010b) Increased amplitude and duration of acoustic stimuli enhance distraction. Anim Behav 80:1075–1079

    Google Scholar 

  • Claridge MF, Morgan JC (1993) Geographical variation in acoustic signals of the planthopper Nilaparvata bakeri (Muir) in Asia: species recognition and sexual selection. Biol J Linn Soc 48:267–281

    Google Scholar 

  • Clayton D (2005) Substrate (acoustic/vibrational) communication and ecology of the ghost crab Ocypode jousseaumei (Brachyura: Ocypodidae). Mar Freshwater Behav Physiol 38:53–70

    Google Scholar 

  • Cocroft RB (2003) The social environment of an aggregating, ant-attended treehopper (Hemiptera: Membracidae: Vanduzea arquata). J Insect Behav 16:79–95

    Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology signals and signal functions. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Outpost, Kerala, pp 47–68

    Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). In: Claridge MF, Drosopoulos S (eds) Insects sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 305–317

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioural ecology of insect vibrational communication. Bioscience 55:323–334

    Google Scholar 

  • Čokl A, Gogala M, Blaževič A (1978) Principles of sound recognition in three pentatomidae bug species (Heteroptera). Biol Vestn (Ljubljana) 2:81–94

    Google Scholar 

  • Čokl A, Virant-Doberlet M, McDowell A (1999) Vibrational directionality in the southern green stink bug Nezara viridula (L.) is mediated by female song. Anim Behav 58:1277–1283

    PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205

    Google Scholar 

  • Čokl A, Zorović M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–45

    Google Scholar 

  • Čokl A, Žunič A, Virant-Doberlet M (2011) Predatory bug Picromerus bidens communicates at different frequency levels. Cent Eur J Biol 6:431–439

    Google Scholar 

  • Dabelsteen T (2005) Public, private or anonymous? Facilitating and countering eavesdropping. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 38–62

    Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2010) Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in Nezara viridula (L.). J Exp Biol 213:3213–3222

    PubMed  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011a) Species identity cues: possibilities for errors during vibrational communication on plant stems. Behav Ecol 22:1209–1217

    Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011b) Search behaviour of two hemipteran species using vibrational communication. Cent Eur J Biol 8:756–769

    Google Scholar 

  • de Groot M, Derlink M, Pavlovčič P, Prešern J, Čokl A, Virant-Doberlet M (2012) Duetting behaviour in the leafhopper Aphrodes makarovi. J Insect Behav 25:419–440

    Google Scholar 

  • De Luca PA, Morris GK (1998) Courtship communication in meadow katydids: female preference for large male vibrations. Behaviour 135:777–793

    Google Scholar 

  • De Souza LR, Kasumovic MK, Judge KA, Morris GK (2011) Communicating male size by tremulatory vibration in a Columbian rainforest katydid Gnathoclita sodalis (Orthoptera, Tettigoniidae). Behaviour 148:341–357

    Google Scholar 

  • De Winter AJ, Rollenhagen T (1990) The importance of male and female acoustic behaviour for reproductive isolation in Ribautodelphax planthoppers (Homoptera: Delphacidae). Biol J Linn Soc 40:191–206

    Google Scholar 

  • Denno RF, Gratton C, Peterson MA, Langellotto GA, Finke DL, Huberty AF (2002) Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83:1443–1458

    Google Scholar 

  • Döbel HG, Denno RF (1994) Predator-planthopper interactions. In: Denno RF, Prefect TJ (eds) Planthoppers and their management. Chapman & Hall, New York, pp 325–399

    Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    CAS  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6(5):e19692. doi:10.1371/journal.pone.0019692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7(3):e32954. doi:10.1371/journal.pone.0032954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans TA, Inta R, Lai JCS, Prueger S, Wei Foo N, Wei’n FuE, Lenz M (2009) Termites eavesdrop to avoid competitors. Proc Roy Soc B 286:4035–4041

    Google Scholar 

  • Fernandez-Montraveta C, Schmitt A (1994) Substrate-borne vibrations produced by male Lycosa tarentula fasciiventris (Araneae, Lycosidae) during courtship and agonistic interactions. Ethology 97:81–93

    Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Google Scholar 

  • Fournier V, Hagler J, Dane K, de León J, Groves J (2008) Identifying the predator complexes of Homalodisca vitripennis (Hemiptera: Cicadellidae): a comparative study of the efficacy of an ELISA and PCR gut content assay. Oecologia 157:629–640

    PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  • Gogala M, Riede K (1995) Time sharing of song activity by cicadas in Temengor forest reserve, Hulu Perak and in Sabah, Malaysia. Malayan Nat J 48:297–305

    Google Scholar 

  • Gogala M, Virant M, Blejec A (1984) Mocking bug Phymata crassipes (Heteroptera). Acoust Lett 8:44–51

    Google Scholar 

  • Gray DA, Banuelos C, Walker SE, Cade WH, Zuk M (2007) Behavioural specialization among populations of the acoustically orienting parasitoid fly Ormia ochracea utilizing different cricket species as hosts. Anim Behav 73:99–104

    Google Scholar 

  • Greenfield MD (2002) Signallers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, New York

    Google Scholar 

  • Gröning J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 83:257–282

    PubMed  Google Scholar 

  • Guillete LM, Hollis KL, Markatian A (2009) Learning in a sedentary insect predator: antlions (Neuroptera: Myrmeleodontidae) anticipate long wait. Behav Process 80:224–232

    Google Scholar 

  • Halfwerk W, Hollerman LJM, Lessells CM, Slabbekoorn H (2011) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219

    Google Scholar 

  • Haynes KF, Yeargan KV (1999) Exploitation of intraspecific communication systems: illicit signallers and receivers. Ann Entomol Soc Am 92:960–970

    Google Scholar 

  • Heady SE, Nault LR, Shambaugh GF, Fairchild L (1986) Acoustic and mating behavior of Dalbulus leafhoppers (Homoptera: Cicadellidae). Ann Entomol Soc Am 79:727–736

    Google Scholar 

  • Heller KG, von Helversen O, Sergejeva M (1997) Indiscriminate response behaviour in a female bushcricket: sex role reversal in selectivity of acoustic mate recognition. Naturwissenschaften 84:252–255

    CAS  Google Scholar 

  • Henry CS (1994) Singing and cryptic speciation in insects. TREE 9:388–392

    CAS  PubMed  Google Scholar 

  • Henschel JR (2002) Long-distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparassidae) across Namib dunes. J Arachnol 30:321–330

    Google Scholar 

  • Hill PSM (1999) Lekking in Gryllotalpa major, the prairie mole cricket (Insecta: Gryllotalpidae). Ethology 105:531–545

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM, Shadley JR (1997) Substrate vibration as a component of a calling song. Naturwissenschaften 84:460–463

    CAS  Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Google Scholar 

  • Hoedjes KM, Kruidhod HM, Higens ME, Dicke M, Vet LEM, Smid HM (2011) Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proc R Soc B 278:889–897

    PubMed Central  PubMed  Google Scholar 

  • Hollis KL, Cogswell H, Snyder K, Guillette LM, Nowbahari E (2011) Specialized learning in antlions (Neuroptera: Myrmeleontidae), pit-digging predators, shortens vulnerable larval stage. PLoS ONE 6(3):e17958. doi:10.1371/journal.pone.0017958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoskin CJ, Higgie M (2010) Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 13:409–420

    PubMed  Google Scholar 

  • Hrabar N, Virant-Doberlet M, Čokl A (2004) Species specificity of male southern green stink bug Nezara viridula (L.) reactions to the female calling song. Acta Zool Sin 50:566–575

    Google Scholar 

  • Hunt RE, Morton TL (2001) Regulation of chorusing in the vibrational communication system of the leafhopper Graminella nigrifrons. Am Zool 41:1222–1228

    Google Scholar 

  • Hunt RE, Nault LR (1991) Roles of interplant movement, acoustic communication and phototaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behav Ecol Sociobiol 28:315–320

    Google Scholar 

  • Ichikawa T (1982) Density-related changes in male-male competitive behavior in the rice brown planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Ent Zool 17:439–452

    Google Scholar 

  • Jackson RR, Carter CM (2001) Geographic variation in reliance on trial-and-error signal derivation by Portia labiata, an araneophagic jumping spider from Philippines. J Insect Behav 14:799–827

    Google Scholar 

  • Jackson RR, Li D (2004) One-encounter, search-image formation by araneophagic spiders. Anim Cogn 7:247–254

    PubMed  Google Scholar 

  • Kanmiya K (2006) Communication by vibratory signals in Diptera. In: Claridge MF, Drosopoulos S (eds) Insects sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 381–396

    Google Scholar 

  • Kirchner WH (1997) Acoustical communication in social insects. In: Leherer M (ed) Orientation and communication in arthropods. Birkenhäuser Verlag, Basel, pp 273–300

    Google Scholar 

  • Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density-dependent effects on mating systems. Phil Trans R Soc B 361:319–334

    PubMed Central  PubMed  Google Scholar 

  • Kotiaho JS, Alatalo RV, Mappes J, Parri S (2004) Adaptive significance of synchronous chorusing in an acoustically signalling wolf spider. Proc R Soc Lond B 271:1847–1850

    Google Scholar 

  • Kvarnemo C, Ahnesjo I (1996) The dynamics of operational sex ratios and competition for mates. TREE 11:404–408

    CAS  PubMed  Google Scholar 

  • Lang AB, Teppner I, Hartbauer M, Römer H (2005) Predation and noise in communication networks of neotropical katydids. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 152–169

    Google Scholar 

  • Laumann RA, Blassioli Moraes MC, Čokl A, Borges M (2007) Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by egg parasitoid Telenomus podisi. Anim Behav 73:637–649

    Google Scholar 

  • Laumann RA, Čokl A, Lopes APS, Fereira JBC, Moraes MCB, Borges M (2011) Silent singers are not safe: selective response of a parasitoid to substrate-borne vibratory signals of stink bugs. Anim Behav 82:1175–1183

    Google Scholar 

  • Legendre F, Marting PR, Cocroft RB (2012) Competitive masking of vibrational signals during mate searching in a treehopper. Anim Behav 83:361–368

    Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189

    CAS  PubMed  Google Scholar 

  • Lewis ER, Narins PM, Cortopasi KA, Yamada WM, Poinar EH, Moore SW, Yu X-L (2001) Do male white lipped frogs use seismic signals for intraspecific communication. Am Zool 41:1185–1199

    Google Scholar 

  • Lohrey AK, Clark DL, Gordon SD, Uetz GW (2009) Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Anim Behav 77:813–821

    Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009a) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009b) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Google Scholar 

  • McGregor PK (1993) Signalling in territorial systems: a context for individual identification, ranging and eavesdropping. Phil Trans R Soc Lond B 340:237–244

    Google Scholar 

  • McGregor PK (2005) Introduction. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 1–6

    Google Scholar 

  • McGregor PK, Peake TM (2000) Communication networks: social environments for receiving and signalling behaviour. Acta Ethol 2:71–81

    Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaller and receiver behaviour in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta Hemiadenia femorata (Stenopelmatidae: Orthoptera). J Zool (Lond) 239:101–122

    Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibrational stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    PubMed  Google Scholar 

  • Michelsen A, Flemming F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Miklas N, Čokl A, Renou M, Virant-Doberlet M (2003) Variability of vibratory signals and mate choice selectivity in the southern green stink bug. Behav Process 61:131–142

    Google Scholar 

  • Miranda X (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Ann Entomol Soc Am 99:374–386

    Google Scholar 

  • Narhardiyati M, Bailey WJ (2005a) Biology and natural enemies of the leafhopper Balclutha incisa (Matsumura) (Hemiptera: Cicadellidae). Austr J Entomol 44:104–109

    Google Scholar 

  • Nuhardiyati M, Bailey W (2005b) Calling and duetting behavior in the leafhopper Balclutha incisa (Hemiptera: Cicadellidae: Deltocephalinae): opportunity for female choice? J Insect Behav 18:259–280

    Google Scholar 

  • Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha with notes of their sound production. Opusc Entomol Suppl 10:1–145

    Google Scholar 

  • Otter KA, Ratcliffe L (2005) Enlightened decision: female assessment and communication networks. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 133–151

    Google Scholar 

  • Paur J, Gray DA (2011) Individual consistency, learning and memory in a parasitoid fly Ormia ochracea. Anim Behav 82:825–830

    Google Scholar 

  • Peake TM (2005) Eavesdropping in communication networks. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 13–37

    Google Scholar 

  • Percy DM, Day MF (2005) Observations of unusual acoustic behaviour in two Australian leafhoppers (Hemiptera, Cicadellidae). J Nat Hist 39:3407–3417

    Google Scholar 

  • Pfannenstiel RS, Hunt RE, Yeargan KV (1995) Orientation of a hemipteran to vibrations produced by feeding caterpillars. J Insect Behav 8:1–9

    Google Scholar 

  • Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Cent Eur J Biol 3:189–197

    Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9:1898–1907

    PubMed Central  PubMed  Google Scholar 

  • Popper AN, Salmon M, Horch KW (2001) Acoustic detection and communication by decapod crustaceans. J Comp Psychol A 187:83–89

    CAS  Google Scholar 

  • Riede K, Kroker A (1995) Bioacoustics and niche differentiation in two cicada species from Bornean lowland forest. Zool Anz 234:43–51

    Google Scholar 

  • Roberts JA, Taylor PW, Uetz GW (2007) Consequences of complex signalling: predator detection of multimodal cues. Behav Ecol 18:236–240

    Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Phil Trans R Soc Lond B 340:179–185

    Google Scholar 

  • Römer H, Bailey W, Dadour I (1989) Insect hearing in the field. III. Masking by noise. J Comp Physiol A 164:609–620

    Google Scholar 

  • Römer H, Lang A, Hartbauer M (2010) The signallers dilemma: a cost-benefit analysis of public and private communication. PLoS ONE 5(10):e13325. doi:10.1371/journal.pone.0013325

    PubMed Central  PubMed  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Google Scholar 

  • Sanders D, Nickel H, Grützner T, Platner C (2008) Habitat structure mediates top-down effects of spiders and ants on herbivores. Basic Appl Ecol 9:152–160

    Google Scholar 

  • Saxena KN, Kumar H (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36:933–936

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90:293–306

    Google Scholar 

  • Simmons LW, Bailey WJ (1993) Agonistic communication between males of a zaprochilinae katydid (Orthoptera: Tettigonnidae). Behav Ecol 4:364–368

    Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Boutin N, van Opzeelan I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound level on fish. TREE 25:419–427

    PubMed  Google Scholar 

  • Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148

    Google Scholar 

  • Stewart KW, Zeigler DD (1984) The use of larval morphology and drumming in Plecoptera systematics and further studies of drumming behavior. Ann Limnol 20:105–114

    Google Scholar 

  • Sullivan-Beckers L, Cocroft RB (2010) The importance of female choice, male-male competition and signal transmission as causes of selection on male mating signals. Evolution 64:3158–3171

    PubMed  Google Scholar 

  • Tishechkin DYu (2000) Vibrational communication in Aphrodinae leafhoppers (Deltocephalinae auct., Homoptera: Cicadellidae) and related groups with notes on classification of higher taxa. Russ Entomol J 9:1–66

    Google Scholar 

  • Tishechkin DYu (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46

    Google Scholar 

  • Turner J, Vollrath F, Hesselberg T (2011) Wind speed affects prey-catching behaviour in an orb web spider. Naturwissenschaften 98:1063–1067

    CAS  PubMed  Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230

    PubMed  Google Scholar 

  • VanderSal ND, Hebets EA (2007) Cross-modal effects on learning: a seismic stimulus improves color discrimination learning in a jumping spider. J Exp Biol 210:3689–3695

    PubMed  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Virant-Doberlet M, Žežlina I (2007) Vibrational communication of Metcalfa pruinosa (Say) (Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73–82

    Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Claridge MF, Drosopoulos S (eds) Insects sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 81–97

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  Google Scholar 

  • Warkentin KM (2005) How embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71

    Google Scholar 

  • Warkentin KM, Caldwell MS, McDaniel JG (2006) Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog Agalychnis callidryas. J Exp Biol 209:1376–1384

    PubMed  Google Scholar 

  • Warkentin KM, Caldwell MS, Siok TD, D’Amato AT, McDaniel JG (2007) Flexible sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. J Exp Biol 210:614–619

    PubMed  Google Scholar 

  • Wignall AE, Jackson RR, Wilcox RS, Taylor PW (2011) Exploitation of environmental noise by an araneophagic assassin bug. Anim Behav 82:1037–1042

    Google Scholar 

  • Wilcox RS, Jackson RR (1998) Cognitive abilities of araneophagic jumping spiders. In: Balda RP, Pepperberg IM, Kamil IC (eds) Animal cognition in nature. Academic Press, San Diego, pp 411–434

    Google Scholar 

  • Wilcox RS, Jackson RR, Gentile K (1996) Spiderweb smokescreens: spider trickster uses background noise to mask stalking movements. Anim Behav 51:313–326

    Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, New York

    Google Scholar 

  • Yamazaki K (2011) Gone with the wind: trembling leaves may deter herbivory. Biol J Linn Soc 104:738–747

    Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Google Scholar 

  • Žunič A, Virant-Doberlet M, Čokl A (2011) Species recognition during substrate-borne communication in Nezara viridula (L.) (Pentatomidae: Heteroptera). J Insect Behav 24:468–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meta Virant-Doberlet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Virant-Doberlet, M. et al. (2014). Vibrational Communication Networks: Eavesdropping and Biotic Noise. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_7

Download citation

Publish with us

Policies and ethics