Skip to main content

Interactions Between Airborne Sound and Substrate Vibration in Animal Communication

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Airborne sound and substrate vibrations are communication channels inextricably linked through commonalities in signal production, propagation, and reception. Bimodal recordings of acoustic calls reveal that signal components in one modality often excite energy in the other and can thus be propagated to receivers via either channel. While studies of communication via airborne sound and substrate vibrations have proceeded largely independently of one another, the frequency at which these modalities co-occur and the number of receivers sensitive to both kinds of energy underscore the broad potential importance of interactions between the two communication channels. Nevertheless, only a handful of species are known to use bimodal acoustic signals. This chapter summarizes what is known about the interactions between airborne and substrate-borne signal components, discusses how interactions between modalities may shape the evolution of bimodal acoustic signals, and identifies outstanding issues in the field along with promising avenues for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator. I. Signal transmission through the substratum. J Comp Physiol A 166:345–353

    Article  Google Scholar 

  • Arnott WP, Sabatier JM (1990) Laser-doppler vibrometer measurements of acoustic to seismic coupling. Appl Acoust 30:279–291

    Article  Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication mechanisms and ecological significance. Princeton University Press, Princeton, pp 66–122

    Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy R, Popper AN, Fay R (eds) Comparative hearing: insects. Springer, New York, pp 228–278

    Google Scholar 

  • Bass HE, Bolen LN, Cress D, Lundien J, Flohr M (1980) Coupling of airborne sound into the earth: frequency dependence. J Acoust Soc Am 67:1502–1506

    Article  Google Scholar 

  • Bell PD (1980) Transmission of vibrations along plant stems: implications for insect communication. J N Y Entomol Soc 88:210–216

    Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark HC (1987) The tuned singing burrow of mole crickets. J Exp Biol 128:383–409

    Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos T Roy Soc B 353:407–419

    Article  Google Scholar 

  • Bernal XE, Rand AS, Ryan MJ (2006) Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to tungara frog calls. Behav Ecol 17:709–715

    Article  Google Scholar 

  • Bickmeyer U, Kalmring K, Halex H, Mücke A (1992) The bimodal auditory–vibratory system of the thoracic ventral nerve cord in Locusta migratoria (Acrididae, Locustinae, Oedipodini). J Exp Zool 264:381–394

    Article  CAS  PubMed  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Brownell P, Farley RD (1979) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol A 131:31–38

    Article  Google Scholar 

  • Brownell PH (1977) Compressional and surface waves in sand used by desert scorpions to locate prey. Science 197:479–482

    Article  CAS  PubMed  Google Scholar 

  • Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41:1229–1240

    Article  Google Scholar 

  • Caldwell MS, Johnston GR, McDaniel JG, Warkentin KM (2010) Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Curr Biol 20:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. P Roy Soc Lond B Bio 274:1087–1092

    Article  Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhofer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  • Castellano S, Rosso A, Laoretti F, Doglio S, Giacoma C (2000) Call intensity and female preferences in the European green toad. Ethology 106:1129–1141

    Article  Google Scholar 

  • Christensen CB, Christensen-Dalsgaard J, Brandt C, Madsen PT (2012) Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius. J Exp Biol 215:331–342

    Article  PubMed  Google Scholar 

  • Cocroft R (2005) Vibrational communication facilitates cooperative foraging in a phloem-feeding insect. P Roy Soc Lond B Bio 272:1023–1029

    Article  Google Scholar 

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Cokl A, Zorovic M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54

    Article  Google Scholar 

  • Collin SP, Marshall NJ (2003) Sensory processing in aquatic environments. Springer, New York

    Book  Google Scholar 

  • Cooper BG, Goller F (2004) Multimodal signals: enhancement and constraint of song motor patterns by visual display. Science 303:544–546

    Article  CAS  PubMed  Google Scholar 

  • Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer, New York

    Book  Google Scholar 

  • Dabelsteen T, McGregor PK, Lampe H, Langmore N, Holland J (1998) Quiet song in song birds: an overlooked phenomenon. Bioacoustics 9:89–105

    Article  Google Scholar 

  • Dorward PK, McIntyre AK (1971) Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. J Physiol 219:77–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drosopoulos S, Claridge MF (eds) (2005) Insect sounds and communication: physiology, behaviour, ecology, and evolution. CRC Press, Boca Raton

    Google Scholar 

  • Elias DO, Mason AC (2010) Signaling in variable environments: substrate-borne signaling mechanisms and communication behavior in spiders. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 25–46

    Google Scholar 

  • Elias DO, Lee N, Hebets EA, Mason AC (2006) Seismic signal production in a wolf spider: parallel versus serial multi-component signals. J Exp Biol 209:1074–1084

    Article  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6:e19692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fahy F, Gardonio P (2007) Sound and structural vibration: radiation, transmission and response. Academic Press, Oxford

    Google Scholar 

  • Finck A (1981) The lyriform organ of the orb-weaving spider Araneous sericatus: vibration sensitivity is altered by bending the leg. J Acoust Soc Am 70:231–233

    Article  Google Scholar 

  • Fitch WT, Hauser MD (2003) Unpacking “honesty”: vertebrate vocal production and the evolution of acoustic signals. In: Simmons AM, Fay RR, Popper AN (eds) Acoustic communication. Springer, New York, pp 65–137

    Chapter  Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Amer Zool 34:644–654

    Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Gordon SD, Uetz GW (2011) Multimodal communication of wolf spiders on different substrates: evidence for behavioural plasticity. Anim Behav 81:367–375

    Article  Google Scholar 

  • Gordon SD, Uetz GW (2012) Environmental interference: impact of acoustic noise on seismic communication and mating success. Behav Ecol 23:707–714

    Article  Google Scholar 

  • Günther RH, O’Connell-Rodwell CE, Klemperer SL (2004) Seismic waves from elephant vocalizations: A possible communication mode? Geophys Res Lett 31

    Google Scholar 

  • Hartline PH (1971) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371

    CAS  PubMed  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Article  Google Scholar 

  • Henry CS (1994) Singing and cryptic speciation insects. Trends Ecol Evol 9:388–392

    Article  CAS  PubMed  Google Scholar 

  • Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol A 152:347–359

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Article  Google Scholar 

  • Hill PSM, Wells H, Shadley JR (2006) Singing from a constructed burrow: why vary the shape of the burrow mouth? J Orthopt Res 15:23–29

    Article  Google Scholar 

  • Ho C, Narins P (2006) Directionality of the pressure-difference receiver ears in the northern leopard frog, Rana pipiens pipiens. J Comp Physiol A 192:417–429

    Article  Google Scholar 

  • Holldobler B (1999) Multimodal signals in ant communication. J Comp Physiol A 184:129–141

    Article  Google Scholar 

  • Jardetzky WS, Press F (1952) Rayleigh-wave coupling to atmospheric compression waves. Bull Seismol Soc Am 42:135–144

    Google Scholar 

  • Keuper A, Kuhne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne-sound and vibration signals in the biotope. Behav Process 8:125–145

    Article  CAS  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol A 129:1–4

    Article  Google Scholar 

  • Latimer W, Schatral A (1983) The acoustic behaviour of the bushcricket Tettigonia cantans I. Behavioural responses to sound and vibration. Behav Process 8:113–124

    Article  CAS  Google Scholar 

  • Latimer W, Sippel M (1987) Acoustic cues for female choice and male competition in Tettigonia cantans. Anim Behav 35:887–900

    Article  Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals. Science 227:187–189

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar EH, Moore SW, Yu XL (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Zool 41:1185–1199

    Article  Google Scholar 

  • Lohrey AK, Clark DL, Gordon SD, Uetz GW (2009) Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Anim Behav 77:813–821

    Article  Google Scholar 

  • Magal C, Scholler M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412–2418

    Article  CAS  PubMed  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353

    Chapter  Google Scholar 

  • Mason MJ, Narins PM (2001) Seismic signal use by fossorial mammals. Amer Zool 41:1171–1184

    Article  Google Scholar 

  • McComb K, Reby D, Baker L, Moss C, Sayialel S (2003) Long-distance communication of acoustic cues to social identity in African elephants. Anim Behav 65:317–329

    Article  Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Article  Google Scholar 

  • Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae). J Zool 233:129–163

    Article  Google Scholar 

  • Narins PM, Reichman OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transmission between burrows of the cape mole-rat, Georychus capensis. J Comp Physiol A 170:13–21

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Feng AS, Fay RR, Popper AN (eds) (2006) Hearing and sound communication in amphibians. Springer, New York

    Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. P Natl Acad Sci USA 102:2425–2429

    Article  CAS  Google Scholar 

  • O’Connell-Rodwell C, Wood J, Rodwell T, Puria S, Partan S, Keefe R, Shriver D, Arnason B, Hart L (2006) Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59:842–850

    Article  Google Scholar 

  • O’Connell-Rodwell CE (2007) Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22:287–294

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion. J Acoust Soc Am 108:3066–3072

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Kinzley C, Rodwell TC, Poole JH, Puria S (2007) Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. J Acoust Soc Am 122:823–830

    Article  PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Wood JD (2010) Vibration generation, propagation and detection in elephants. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, p 183

    Google Scholar 

  • Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. Am Nat 166:231–245

    Article  PubMed  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. P Roy Soc Lond B Bio 219:371–396

    Article  CAS  Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J Roy Soc Interface 9:1898–1907

    Article  Google Scholar 

  • Popper AN, Fay RR (eds) (2005) Sound source localization. Springer, New York

    Google Scholar 

  • Popper AN, Fay R, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall J (eds) Sensory processing in aquatic environments. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Press F, Ewing M (1951) Theory of air-coupled flexural waves. J Appl Phys 22:892–899

    Article  Google Scholar 

  • Rado R, Terkel J, Wollberg Z (1998) Seismic communication signals in the blind mole-rat (Spalax ehrenbergi): electrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 183:503–511

    Article  CAS  PubMed  Google Scholar 

  • Randall JA (2010) Drummers and stompers: vibrational communication in mammals. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across Taxa. Transworld, Kerala, pp 99–120

    Google Scholar 

  • Reuter T, Nummela S, Hemila S (1998) Elephant hearing. J Acoust Soc Am 104:1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Ritschard M, Riebel K, Brumm H (2010) Female zebra finches prefer high-amplitude song. Anim Behav 79:877–883

    Article  Google Scholar 

  • Rossler W, Jatho M, Kalmring K (2006) The auditory-vibratory sensory system in bushcrickets. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology, and evolution. CRC Press, Boca Raton, pp 35–69

    Google Scholar 

  • Rovner JS (1975) Sound production by nearctic wolf spiders: a substratum-coupled stridulatory mechanism. Science 190:1309–1310

    Article  Google Scholar 

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931

    Article  PubMed  Google Scholar 

  • Sabatier JM, Bass HE, Bolen LN, Attenborough K (1986) Acoustically induced seismic waves. J Acoust Soc Am 80:646–649

    Article  Google Scholar 

  • Saxena KN, Kumar H (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36:933–936

    Article  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    CAS  PubMed  Google Scholar 

  • Shaw S (1994) Detection of airborne sound by a cockroach ‘vibration detector’: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47

    PubMed  Google Scholar 

  • Stiedl O, Kalmring K (1989) The importance of song and vibratory signals in the behaviour of the bushcricket Ephippiger ephippiger Fiebig (Orthoptera, Tettigoniidae): taxis by females. Oecologia 80:142–144

    Article  CAS  PubMed  Google Scholar 

  • Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:1–7

    Article  Google Scholar 

  • Sullivan-Beckers L, Hebets EA (2011) Modality-specific experience with female feedback increases the efficacy of courtship signalling in male wolf spiders. Anim Behav 82:1051–1057

    Article  Google Scholar 

  • Taylor JRA, Patek SN (2010) Crustacean seismic communication: Heard but not present? In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms, and function across taxa. Transworld, Kerala, pp 9–24

    Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: Insights from video/audio playback studies. Brain Behav Evol 59:222–230

    Article  PubMed  Google Scholar 

  • Uetz GW, Roberts JA, Taylor PW (2009) Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Anim Behav 78:299–305

    Article  Google Scholar 

  • Virant-Doberlet M, Cokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Virant-Doberlet M, Cokl A, Zorovic M (2006) Use of substrate vibrations for orientation. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology, and evolution. CRC Press, Boca Raton, pp 81–97

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    Article  PubMed  Google Scholar 

  • Walker TJ, Figg DE (1990) Song and acoustic burrow of the prairie mole cricket, Gryllotalpa major (Orthoptera: Gryllidae). J Kans Entomol Soc 63:237–242

    Google Scholar 

  • Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol A 166:83–95

    Article  CAS  PubMed  Google Scholar 

  • Whang A, Janssen J (1994) Sound production through the substrate during reproduction in the mottled sculpin, Cottus bairdi (Cottidae). Environ Biol Fishes 40:141–148

    Article  Google Scholar 

  • Young BA (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Q Rev Biol 78:303–325

    Article  PubMed  Google Scholar 

  • Young BA (2010) Vibration detection in snakes. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Transworld, Kerala, pp 85–98

    Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank all those who have generously contributed to this chapter through discussions and logistical support. I am grateful to Rex Cocroft for his encouragement and for helping to shape the manuscript with his advice and comments. I would like to thank Peggy Hill for additional comments. I would also like to thank Karen Warkentin, John Christy, Rachel Page, and Alex Trillo for helping to develop many of the ideas presented here. Additional gratitude goes to Karen Warkentin and Mark Bee for the generous use of their equipment, Reinhard Lakes-Harlan for the use of his cicada recordings, and Tim Polnaszek for help in obtaining jay call recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caldwell, M.S. (2014). Interactions Between Airborne Sound and Substrate Vibration in Animal Communication. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_6

Download citation

Publish with us

Policies and ethics