Skip to main content

Vibratory Communication in Stingless Bees (Meliponini): The Challenge of Interpreting the Signals

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Foragers of several species of stingless bees (Apidae; Meliponini), a group of eusocial bees comprising more than 400 mainly tropical species, produce pulsed thoracic vibrations inside the nest when returning from a successful foraging trip. These vibrations do not provide navigational information on the direction and distance of a food source. Instead, both their occurrence and their temporal pattern correlate with the net gain during a foraging trip. The vibrations are therefore considered important information for potential foragers about the profitability of a food patch. Their repeated presentation lowers the foraging threshold of potential food collectors. The vibrations are considered as an alerting signal, which increases the colony’s foraging activity. So far, nothing is known about how foragers of stingless bees perceive the pulsed thoracic vibrations of the recruiters. Yet, consideration of the corresponding receptors and their thresholds in honeybees suggests three possible pathways for their transmission to the nestmates: (1) the substrate (vibrations), (2) the air (air particle movements), and (3) direct physical contact (tactile stimuli). The corresponding differ significantly. Whereas substrate vibrations will reach receivers up to ten bee lengths away (medium-range transmission), air particle oscillations and direct vibrations can be detected only by bees very close to, or in contact with, the forager (short-range transmission). Thus, depending on the transmission pathway and the recipient’s sensory capacity, the signal generated by thoracic vibrations will have different meanings. Indeed, substrate vibrations attract both food processors and potential foragers to the vibrating bee, whereas air particle oscillations and direct contact vibrations, in addition to important olfactory and gustatory information, may well be used by prospective recruits to evaluate the profitability of the advertised food source. In contrast to the honeybee waggle dance vibrations, there is no indication in stingless bees of an air jet potentially providing directional information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The individual variation in sugar intake of M. seminigra foragers collecting at an artificial food source was 3.32 mg (Hrncir et al. 2004b). Taking measurements in honeybees, which are of similar body size as M. seminigra, as reference, the bees spend 0.70 mg sugar for each 1,000 m of flight (Hanauer-Thieser and Nachtigall 1995). Nestmates receiving the thoracic vibrations of a forager would have to decide whether the forager loaded 3.32 mg less sugar at the food source (less energy intake) or spent more energy due to an additional 4,740 m of flight (consumption of additional 3.32 mg sugar). The energy budget, and thus thoracic vibrations reflecting it, would be the same under both conditions provided that thoracic vibrations are influenced to the same degree by energy intake and energy consumption.

  2. 2.

    Wasps and bees produce thoracic vibrations when trying to escape from any form of confinement, such as when pushing through narrow nest entrances (Michener 2000), or when trying to escape from the grasp of predators or researchers (Esch and Wilson 1967; Schneider 1975; Larsen et al. 1986; Hrncir et al. 2008a). This form of thoracic vibrations (termed “disturbance buzzes”: Larsen et al. 1986; “annoyance buzzing”: Hrncir et al. 2008a) are known from both solitary bees (Colletes cunicularius: Larsen et al. 1986) and social bees (Bombini; Bombus terrestris: Schneider 1975; Meliponini; Melipona spp.: Esch and Wilson 1967; Hrncir et al. 2008a, b; Nunes-Silva 2011).

References

  • Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of sugar concentration and nectar source distance. Apidologie 33:375–388

    Article  CAS  Google Scholar 

  • Allerstorfer S (2004) Rekrutierung und Kommunikation bei Nannotrigona testaceicornis Lep. (1836) (Hymenoptera; Apidae; Meliponini). Diploma thesis, University of Vienna, Austria

    Google Scholar 

  • Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z vergl Physiol 31:77–88

    Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin, pp 228–278

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Article  Google Scholar 

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Bennet-Clark HC (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. J Exp Biol 202:3347–3357

    CAS  PubMed  Google Scholar 

  • Biesmeijer JC, de Vries H (2001) Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behav Ecol Sociobiol 49:89–99

    Article  Google Scholar 

  • Biesmeijer JC, Slaa EJ (2004) Information flow and organization of stingless bee foraging. Apidologie 35:143–157

    Article  Google Scholar 

  • Biesmeijer JC, van Nieuwstadt MGL, Lukács S, Sommeijer MJ (1998) The role of internal and external information in foraging decisions of Melipona workers (Hymenoptera: Meliponinae). Behav Ecol Sociobiol 42:107–116

    Article  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 73–113

    Google Scholar 

  • Burkart A, Lunau K, Schlindwein C (2011) Comparative bioacoustical studies on flight and buzzing of neotropical bees. J Pollination Ecol 6:118–124

    Google Scholar 

  • Camargo JMF, Pedro SRM (2007) Meliponini Lepeletier, 1836. In: Moure JS, Urban D, Melo GAR (eds) Catalogue of bees (Hymenoptera, Apoidea) in the neotropical region. Sociedade Brasileira de Entomologia, Curitiba, pp 272–578

    Google Scholar 

  • Conrad T, Paxton RJ, Barth FG, Francke W, Ayasse M (2010) Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae). J Exp Biol 213:4065–4073

    Article  CAS  PubMed  Google Scholar 

  • Dyer FC (2002) The biology of the dance language. Annu Rev Entomol 47:917–949

    Article  CAS  PubMed  Google Scholar 

  • Eickwort GC, Ginsberg HS (1980) Foraging and mating behavior in Apoidea. Annu Rev Entomol 25:421–446

    Article  Google Scholar 

  • Esch H (1962) Über die Auswirkung der Futterplatzqualität auf die Schallerzeugung im Werbetanz der Honigbiene. Verh Deut Z 26:302–309

    Google Scholar 

  • Esch H (1967) Die Bedeutung der Lauterzeugung für die Verständigung der stachellosen Bienen. Z vergl Physiol 56:199–220

    Google Scholar 

  • Esch H (2012) Foraging honey bees: how foragers determine and transmit information about feeding site locations. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 53–64

    Chapter  Google Scholar 

  • Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40

    Google Scholar 

  • Esch H, Wilson D (1967) The sounds produced by flies and bees. Z vergl Physiol 54: 256–267

    Google Scholar 

  • Esch H, Esch I, Kerr WE (1965) Sound: An element common to communication of stingless bees and to dances of the honey bee. Science 149:320–321

    Article  CAS  PubMed  Google Scholar 

  • Farina WM, Grüter C (2009) Trophallaxis—a mechanism of information transfer. In: Jarau S, Hrncir M (eds) Food exploitation by social insects—ecological, behavioral, and theoretical approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 183–197

    Google Scholar 

  • Frisch K von (1946) Die Tänze der Bienen. Österr Zool Z 1:1–48

    Google Scholar 

  • Grüter C, Farina W (2009) The honeybee waggle dance: can we follow the steps? TREE 24:242–247

    PubMed  Google Scholar 

  • Hanauer-Thieser U, Nachtigall W (1995) Flight of the honey bee. VI. energetics of wind tunnel exhaustion flights at defined fuel content, speed adaptation and aerodynamics. J Comp Physiol B 165:471–483

    Article  Google Scholar 

  • Hart AG, Ratnieks FLW (2002) Task-partitioned nectar transfer in stingless bees: work organisation in a phylogenetic context. Ecol Entomol 27:163–168

    Article  Google Scholar 

  • Harter B, Leistikow C, Wilms W, Truylio B, Engels W (2002) Bees collecting pollen from flowers with poricidal anthers in a south Brazilian Araucaria forest: a community study. J Apicult Res 40:9–16

    Google Scholar 

  • Hasegawa Y, Ikeno H (2011) How do honeybees attract nestmates using waggle dances in dark and noisy hives? PLoS ONE 6:e19619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heran H (1959) Wahrnehmung und Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. Z vergl Physiol 42:103–163

    Article  Google Scholar 

  • Hrncir M (2009) Mobilizing the foraging force—mechanical signals in stingless bee recruitment. In: Jarau S, Hrncir M (eds) Food exploitation by social insects—ecological, behavioral, and theoretical approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 199–221

    Chapter  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata II. Possible mechanisms of communication. Apidologie 31:93–113

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol A 189:761–768

    Article  CAS  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004a) Thorax vibrations of a stingless bee (Melipona seminigra). I. No influence of visual flow. J Comp Physiol A 190:539–548

    CAS  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004b) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190:549–560

    CAS  Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006a) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulos S, Claridge MF (eds) Insect sound and communication – physiology, behaviour, ecology and evolution. CRC Press, Taylor & Francis Group, Boca Raton, pp 421–436

    Google Scholar 

  • Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006b) Vibrating the food receivers: a direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887

    Article  Google Scholar 

  • Hrncir M, Gravel AI, Schorkopf DLP, Schmidt VM, Zucchi R, Barth FG (2008a) Thoracic vibrations in stingless bees (Melipona seminigra): Resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J Exp Biol 211:678–685

    Article  PubMed  Google Scholar 

  • Hrncir M, Schorkopf DLP, Schmidt VM, Zucchi R, Barth FG (2008b) The sound field generated by tethered stingless bees (Melipona scutellaris): inferences on its potential as a recruitment mechanism inside the hive. J Exp Biol 211:686–698

    Article  PubMed  Google Scholar 

  • Hrncir M, Maia-Silva C, McCabe SI, Farina WM (2011) The recruiter’s excitement—features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J Exp Biol 214:4055–4064

    Article  PubMed  Google Scholar 

  • Hubbel SP, Johnson LK (1978) Comparative foraging behavior of six stingless bee species exploiting a standardized resource. Ecology 59:1123–1136

    Article  Google Scholar 

  • Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects—ecological, behavioral, and theoretical approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 223–249

    Chapter  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie 31:81–91

    Article  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth FG (2004) A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa SMITH 1863). J Comp Physiol A 190:233–239

    Article  CAS  Google Scholar 

  • Jarau S, Schulz CM, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl decanoate, the first trail pheromone compound identified in a stingless bee (Trigona recursa). J Chem Ecol 32:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Johnson LK (1983) Foraging strategies and the structure of stingless bee communities in Costa Rica. In: Jaisson P (ed) Social insects in the tropics 2. Université Paris-Nord, Paris, pp 31–58

    Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Article  Google Scholar 

  • King MJ (1993) Buzz foraging mechanism of bumble bees. J Apicult Res 32:41–49

    Google Scholar 

  • King MJ, Buchmann SL, Spangler H (1996) Activity of asynchronous flight muscle from two bee families during sonication (buzzing). J Exp Biol 199:2317–2321

    CAS  PubMed  Google Scholar 

  • Kirchner W (1994) Hearing in honeybees: the mechanical response of the bee’s antenna to near field sound. J Comp Physiol A 175:261–265

    Article  Google Scholar 

  • Kronberger E (2000) Futterplatzrekrutierung bei Melipona seminigra merillae. Diploma thesis, University of Vienna, Austria

    Google Scholar 

  • Larsen O, Gleffe G, Tengö J (1986) Vibration and sound communication in solitary bees and wasps. Physiol Entomol 11:287–296

    Article  Google Scholar 

  • Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 38:521–557

    Article  Google Scholar 

  • Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z vergl Physiol 41:405–434

    Article  Google Scholar 

  • Lindauer M, Kerr WE (1960) Communication between workers of stingless bees. Bee World 41(29–41):65–71

    Google Scholar 

  • Menzel R (2012) Navigation and communication: commentary. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 117–122

    Chapter  Google Scholar 

  • Michelsen A (2003) Signals and flexibility in the dance communication of honeybees. J Comp Physiol A 189:165–174

    Google Scholar 

  • Michelsen A (2012) How do honey bees obtain information about direction by following dances? In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 65–76

    Chapter  Google Scholar 

  • Michelsen A, Nocke H (1974) Biophysical aspects of sound communication in insects. Adv Insect Physiol 10:247–296

    Article  Google Scholar 

  • Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol A 161:633–643

    Article  Google Scholar 

  • Michener CD (1962) An interesting method of pollen collecting by bees from flowers with tubular anthers. Rev Biol Trop 10:167–175

    Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study. Harvard University Press, Cambridge

    Google Scholar 

  • Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Morawetz L (2007) Reichweite und Übertragung vibratorischer Signale bei der Kommunikation stachelloser Bienen. Diploma thesis, University of Vienna, Austria

    Google Scholar 

  • Nachtigall W (2003) Insektenflug. Springer, Berlin

    Book  Google Scholar 

  • Nieh JC (1998) The food recruitment dance of the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:133–145

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1995) A stingless bee (Melipona panamica) indicates food location without using a scent trail. Behav Ecol Sociobiol 37:63–70

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387–399

    Article  Google Scholar 

  • Nieh JC, Sanchez D (2005) Effect of food quality, distance and height on thoracic temperature in the stingless bee Melipona panamica. J Exp Biol 208:3933–3943

    Article  PubMed  Google Scholar 

  • Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94

    Article  Google Scholar 

  • Nocke H (1971) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z vergl Physiol 74:272–314

    Google Scholar 

  • Nunes-Silva P (2011) Capacidade vibratória e polinização por vibração nas abelhas do gênero Melipona (Apidae, Meliponini) e Bombus (Apidae, Bombini). PhD thesis, University of São Paulo-Ribeirão Preto, Brazil

    Google Scholar 

  • Nunes-Silva P, Hrncir M, Imperatriz-Fonseca VL (2010) A polinização por vibração. Oecolog Aust 14:140–151

    Google Scholar 

  • Oeynhausen A, Kirchner WH (2001) Vibrational signals of foraging bumblebees (Bombus terrestris) in the nest. In: Proceedings of the meeting of the European sections of IUSSI, Berlin, Germany, p 31

    Google Scholar 

  • Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL, Pierce NE (2010) A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylogenet Evol 56:519–525

    Article  PubMed  Google Scholar 

  • Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Linn Soc 99:206–232

    Article  Google Scholar 

  • Rohrseitz K (1998) Biophysikalische und ethologische Aspekte der Tanzkommunikation der Honigbienen (Apis mellifera carnica Pollm.). Doctoral thesis, Julius Maximilian University Würzburg, Germany

    Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Roselino AC, Hrncir M (2012) Repeated unrewarded scent exposure influences the food choice of stingless bee foragers, Melipona scutellaris. Anim Behav 83:755–762

    Article  Google Scholar 

  • Roubik DW (1989) The ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143

    Article  Google Scholar 

  • Samwald U (2000) Mechanismen der Futterplatzrekrutierung bei Melipona seminigra merillae CCKL (1919) (Hymenoptera; Apidae; Meliponinae). Diploma thesis, University of Vienna, Austria

    Google Scholar 

  • Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594

    PubMed  Google Scholar 

  • Schmidt VM, Zuchi R, Barth FG (2003) A stingless bee marks feeding site in addition to the scent path (Scaptotrigona aff. depilis). Apidologie 34:237–248

    Article  Google Scholar 

  • Schmidt VM, Zucchi R, Barth FG (2006) Recruitment in a scent trail laying stingless bee (Scaptotrigona aff. depilis): changes with reduction but not with increase of the energy gain. Apidologie 37:487–500

    Article  Google Scholar 

  • Schmidt VM, Hrncir M, Schorkopf DLP, Mateus S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behaviour in the stingless bee Nannotrigona testaceicornis. Apidologie 39:260–272

    Article  Google Scholar 

  • Schneider P (1975) Versuche zur Erzeugung des Verteidigungstones bei Hummeln. Zool Jahrb allg Zool 79:111–127

    Google Scholar 

  • Schön A (1911) Bau und Entwicklung des tibialen Chordotonalorgans bei der Honigbiene und bei Ameisen. Zool Jahr Anat 31:439–472

    Google Scholar 

  • Schorkopf DLP, Jarau S, Francke W, Twele R, Zucchi R, Hrncir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information. Trigona bees deposit saliva to signal resource locations. P Roy Soc Lond B 274:895–898

    Article  Google Scholar 

  • Schorkopf DL, Morawetz L, Bento JM, Zucchi R, Barth FG (2011) Pheromone paths attached to the substrate in meliponine bees: helpful but not obligatory for recruitment success. J Comp Physiol 197:755–764

    Article  CAS  Google Scholar 

  • Schwarz HF (1948) Stingless bees (Meliponidae) of the western hemisphere. B Am Mus Nat Hist 90:1–546

    Google Scholar 

  • Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383

    Article  Google Scholar 

  • Simpson J (1964) The mechanism of honey-bee queen piping. Z vergl Physiol 48:277–282

    Google Scholar 

  • Snodgrass RE (1956) Anatomy of the honey bee. Comstock Publishing Associates, Ithaca

    Google Scholar 

  • Sommeijer MJ, De Bruijn LLM (1994) Intranidal feeding, trophallaxis and sociality in stingless bees. In: Hunt J, Nalepa C (eds) Nourishment and evolution in insect societies. Westview Press, Oxford, pp 391–418

    Google Scholar 

  • Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853

    Article  CAS  PubMed  Google Scholar 

  • Storm J, Kilpinen O (1998) Modelling the subgenual organ of the honeybee, Apis mellifera. Biol Cybern 78:175–182

    Article  Google Scholar 

  • Tautz J (1996) Honeybee waggle dance: recruitment success depends on the dance floor. J Exp Biol 199:1375–1381

    PubMed  Google Scholar 

  • Tautz J, Rohrseitz K (1998) What attracts honeybees to a waggle dancer? J Comp Physiol A 183:661–667

    Article  Google Scholar 

  • Tautz J, Casas J, Sandeman DC (2001) Phase reversal of vibratory signals in honeycomb may assist dancing honeybees to attract their audience. J Exp Biol 204:3737–3746

    CAS  PubMed  Google Scholar 

  • Vicidomini S (1998) Biology of Xylocopa (Xylocopa) violacea (L., 1758) (Hymenoptera: Apidae): female nest-defence. Annali del Museo Civico di Rovereto 12:85–100

    Google Scholar 

  • Wille A (1963) Behavioral adaptations of bees for pollen collecting from Cassia flowers. Rev Biol Trop 11:205–210

    Google Scholar 

  • Wille A, Michener CD (1973) The nest architecture of stingless bees with a special reference to those of Costa Rica (Hymenoptera, Apidae). Rev Biol Trop 21(Suppl 1):1–278

    Google Scholar 

Download references

Acknowledgments

Our sincere thanks go to Ronaldo Zucchi, Stefan Jarau, Dirk-Louis P. Schorkopf, and Veronika Schmidt whose participation, help, and discussion were decisive for many of the studies described in this chapter. Financial support for the research came from grants FAPESP (2006/50809-7) and CNPq (304722/2010-3) to MH, and FWF (P 14328, P 17530) to FGB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hrncir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hrncir, M., Barth, F.G. (2014). Vibratory Communication in Stingless Bees (Meliponini): The Challenge of Interpreting the Signals. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_18

Download citation

Publish with us

Policies and ethics