Skip to main content

Functional Morphology and Evolutionary Diversity of Vibration Receptors in Insects

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Vibratory signals of biotic and abiotic origin occur commonly in the environment of all living organisms. Many species deliberately produce such signals for communication purposes. Thus, it is not only useful but also advantageous and/or necessary to be able to detect and process vibratory signals with appropriate receptor organs. Mechanoreception is suggested to be evolutionarily ancient among animals (Kung 2005; Thurm 2001). Given the long evolutionary history, such receptors have very different anatomical structures and corresponding physiological properties. Responding to mechanical stress is a basic property of cells, even outside the nervous system. In the nervous system, specialized sensory cells and organs register mechanosensory signals and impart the information to higher centers. Structural and molecular adaptations in various mechanoreceptors can push these systems to a sensitivity at or near to the physical limits, e.g., with respect to the noise–stimuli relation. Here, we will deal with the vibratory receptor systems of insects, with a focus on the specialized scolopidial sensory organs from molecular mechanisms to systems analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert J, Nadrowski B, Göpfert M (2007) Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 17:1000–1006

    CAS  PubMed  Google Scholar 

  • Bailey WJ (1990) Acoustic behaviour of insects. An evolutionary perspective. Chapman and Hall, London, New York, Tokyo

    Google Scholar 

  • Bodmer R, Barbel S, Sheperd S, Jack J, Jan L, Jan Y (1987) Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307

    CAS  PubMed  Google Scholar 

  • Broad G, Quicke D (2000) The adaptive significance of host location by vibrational sounding in parasitoid wasps. Proc R Soc Lond B 267:2403–2409

    CAS  Google Scholar 

  • Burrows M, Newland PI (1993) Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J Comp Neurol 329:412–426

    CAS  PubMed  Google Scholar 

  • Burrows M, Pflüger H-J (1988) Positive feedback loops from proprioceptors involved in leg movements of the locust. J Comp Physiol A 163:425–440

    Google Scholar 

  • Campos-Ortega J, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, Heidelberg

    Google Scholar 

  • Chalfie M (2009) Neurosensory mechanotransduction. Nature Rev Mol Cell Biol 10:44–52

    CAS  Google Scholar 

  • Christensen A, Corey D (2007) TRP channels in mechanosensation: direct or indirect activation? Nature Rev Neurosci 8:510–521

    CAS  Google Scholar 

  • Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680

    Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. CRC Press, Boca Raton, pp 305–317

    Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695–705

    CAS  PubMed  Google Scholar 

  • Cokl A (1983) Functional properties of vibroreceptors in the legs of Nezara viridula (L.) (Heteroptera, Pentatomidae). J Comp Physiol A 150:261–269

    Google Scholar 

  • Cokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Ann Rev Entomol 48:29–50

    CAS  Google Scholar 

  • Dambach M (1972) Der Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen frei beweglicher Tiere. J Comp Physiol 79:281–304

    Google Scholar 

  • Debaisieux P (1938) Organes scolopidiaux des pattes d’ìnsectes. La Cellule 47:77–202

    Google Scholar 

  • Devetak D (1998) Detection of substrate vibration in Neuropteroidea: a review. Acta Zool Fennica 209:87–94

    Google Scholar 

  • Devetak D, Amon T (1997) Substrate vibration sensitivity of the leg scolopidial organs in the green lacewing Chrysoperla carnea. J Insect Physiol 43:433–437

    CAS  Google Scholar 

  • Devetak D, Pabst M (1994) Structure of the subgenual organ in the green lacewing, Chrysoperna carnea. Tiss Cell 26:249–257

    CAS  Google Scholar 

  • Eberhard M, Picker M (2008) Vibrational communication in two sympatric species of Mantophasmatodea (Heelwalkers). J Insect Behav 21:240–257

    Google Scholar 

  • Eberhard M, Lang D, Metscher B, Pass G, Picker M, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthrop Struct Devel 39:230–241

    CAS  Google Scholar 

  • Effertz T, Wiek R, Göpfert MC (2011) NompC TRP channel is essential for Drosophila sound receptor function. Curr Biol 21:592–597

    CAS  PubMed  Google Scholar 

  • Erler G (1983) Reduction of mechanical sensitivity in an insect mechanoreceptor correlated with destruction of its tubular body. Cell Tiss Res 234:451–461

    CAS  Google Scholar 

  • Field LH, Bailey WJ (1997) Sound production in primitive Orthoptera from Western Australia: sounds used in defence and social communication in Ametrus sp. and Hadrogryllacris sp. (Gryllacrididae: Orthoptera). J Nat Hist 31:1127–1141

    Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Ins Physiol 27:1–228

    Google Scholar 

  • Field L, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743

    Google Scholar 

  • French AS (1988) Transduction mechanism of mechanosensilla. Ann Rev Entomol 33:39–58

    Google Scholar 

  • French AS (1992) Mechanotransduction. Ann Rev Physiol 54:135–152

    CAS  Google Scholar 

  • Friedrich H (1929) Vergleichende Untersuchungen über die tibialen Scolopalorgane einiger Orthopteren. Z wiss Zool 134:84–148

    Google Scholar 

  • Füller H, Ernst A (1973) Die Ultrastruktur der femoralen Chordotonalorgane von Carausius morosus Br. Zool Jb Anat 91:574–601

    Google Scholar 

  • Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066

    CAS  PubMed  Google Scholar 

  • Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38:2057–2064

    PubMed  Google Scholar 

  • Göpfert M, Albert J, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000

    PubMed  Google Scholar 

  • Grueber WB, Jan LY, Jan YN (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129:2867–2878

    CAS  PubMed  Google Scholar 

  • Guedes R, Matheson S, Frei B, Smith M, Yack J (2012) Vibration detection and discrimination in the marked birch caterpillar (Drepana arcuata). J Comp Physiol A 198:325–335

    CAS  Google Scholar 

  • Gwynne D (2004) Reproductive behavior of ground weta (Orthoptera: Anostostomatidae): drumming behavior, nuptial feeding, post-copulatory guarding and maternal care. J Kansas Entomol Soc 77:414–428

    Google Scholar 

  • Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z Wiss Zool 139:560–664

    Google Scholar 

  • Hill KG (1983) The physiology of locust auditory receptors. II. Membrane potentials associated with the response of the receptor cell. J Comp Physiol 152:483–493

    Google Scholar 

  • Howard J, Bechstein S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–226

    CAS  PubMed  Google Scholar 

  • Howse P (1964) An investigation into the mode of action of the subgenual organ in the termite, Zootermopsis angusticollis Emerson, and the cockroach, Periplaneta americana L. J Insect Physiol 10:409–424

    Google Scholar 

  • Howse P (1968) The fine structure and functional organization of chordotonal organs. Symp Zool Soc Lond 23:167–198

    Google Scholar 

  • Hustert R, Pflüger H-J, Bräunig P (1981) Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III. The external mechanoreceptors: the campaniform sensilla. Cell Tiss Res 216:97–111

    CAS  Google Scholar 

  • Jeram S, Rössler W, Cokl A, Kalmring K (1995) Structure of atympanate tibial organs in legs of the cave-living Ensifera, Troglophilus neglectus (Gryllacrididae, Raphidophoridae). J Morphol 223:109–118

    Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531

    CAS  PubMed  Google Scholar 

  • Keil TA (2012) Sensory cilia in arthropods. Arthrop Struct Dev 41:515–534

    Google Scholar 

  • Kent KS, Griffin LM (1990) Sensory organs of the thoracic legs of the moth Manduca sexta. Cell tiss Res 259:209–223

    CAS  Google Scholar 

  • Kent KS, Fjeld CC, Anderson R (1996) Leg proprioceptors of the tobacco hornworm, Manduca sexta: organisation of central projections at larval and adult stages. Micr Res Tech 35:265–284

    CAS  Google Scholar 

  • Kernan M (2007) Mechanotransduction and auditory transduction in Drosophila. Pflügers Arch 454:703–720

    CAS  PubMed  Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Google Scholar 

  • Kittmann R, Schmitz J (1992) Functional specialisation of the scoloparia of the femoral chordotonal organ in stick insects. J Exp Biol 173:91–108

    Google Scholar 

  • Klose M (1996) Development of leg chordotonal sensory organs in normal and heat shocked embryos of the cricket Teleogryllus commodus (Walker). Roux’s Arch Dev Biol 205:344–355

    Google Scholar 

  • Klose M, Bentley D (1989) Transient pioneer neurons are essential for formation of an embryonic peripheral nerve. Science 245:982–984

    CAS  PubMed  Google Scholar 

  • Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: Response characteristics of single receptor units. J Insect Physiol 28:155–163

    Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    CAS  PubMed  Google Scholar 

  • Lai E, Orgogozo V (2004) A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 269:1–17

    CAS  PubMed  Google Scholar 

  • Lakes R, Pollack GS (1990) The development of the sensory organs of the legs in the blowfly, Phormia regina. Cell Tiss Res 259:93–104

    CAS  Google Scholar 

  • Lakes-Harlan R, Heller K-G (1992) Ultrasound-sensitive ears in a parasitoid fly. Naturwissenschaften 79:224–226

    Google Scholar 

  • Lakes-Harlan R, Lefevre C (2012) The femoral chordotonal organ of adult Drosophila melanogaster Meigen 1830. Mitt Dtsch Ges Allg Angew Ent 18:71–74

    Google Scholar 

  • Lakes-Harlan R, Pollack GS (1993) Pathfinding of peripheral neurons in the central nervous system of an embryonic grasshopper (Chorthippus biguttulus). Cell Tiss Res 273:97–106

    Google Scholar 

  • Lakes-Harlan R, Strauß J (2006) Developmental constraint of insect audition. Front Zool 3:27

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of insect hearing organs from a preadaptive structure. Proc R Soc B 266:1161–1167

    PubMed Central  Google Scholar 

  • Latimer W, Schatral A (1983) The acoustic behaviour of the bushcricket Tettigonia cantans. I. Behavioural responses to sound and vibration. Behav Proc 8:113–124

    CAS  Google Scholar 

  • Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(= NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS ONE 5:e11012

    PubMed Central  PubMed  Google Scholar 

  • Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification of Drosophila. Neuron 77:115–128

    CAS  PubMed  Google Scholar 

  • Liang X, Madrid J, Saleh H, Howard J (2011) NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton 68:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang X, Madrid J, Gärtner R, Verbavatz J-M, Schiklenk C, Wilsch-Bräuninger M, Bogdanova A, Stenger F, Voigt A, Howard J (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763

    CAS  PubMed  Google Scholar 

  • Lin Y, Rössler W, Kalmring K (1995) Morphology of the tibial organs of Acrididae: comparison of the subgenual organ and distal organs in fore-, mid-, and hindlegs of Schistocerca gregaria (Acrididae, Catantopidae) and Locusta migratoria (Acrididae, Oedipodinae). J Morphol 226:351–360

    Google Scholar 

  • Lu Q, Senthilan P, Effertz T, Nadrowski B, Göpfert M (2009) Using Drosophila for studying fundamental processes in hearing. Integr Comp Biol 49:674–680

    PubMed  Google Scholar 

  • Matheson T (1992) Morphology of the central projections of physiologically characterised neurones from the locust methathoracic femoral chordotonal organ. J Comp Physiol A 170:101–120

    Google Scholar 

  • Matheson T, Field LH (1990) Innervation of the metathoracic femoral chordotonal organ of Locusta migratoria. Cell Tissue Res 259:551–560

    Google Scholar 

  • Matsuo E, Kamikouchi A (2013) Neuronal encoding of sound, gravity, and wind in the fruit fly. J Comp Physiol A 199:253–262

    Google Scholar 

  • Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T (2009) Evolutionary conservation and changes in insect TRP channels. BMC Evol Biol 9:228

    PubMed Central  PubMed  Google Scholar 

  • McIver S (1985) Mechanoreception. In: Kerkut G, Gilbert L (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp 71–132

    Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21:592–610

    CAS  PubMed  Google Scholar 

  • Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster. Development 112:241–253

    CAS  PubMed  Google Scholar 

  • Menzel J, Tautz J (1994) Functional morphology of the subgenual organ of the carpenter ant. Tiss Cell 26:735–746

    CAS  Google Scholar 

  • Merritt DJ, Murphey RK (1992) Projections of leg proprioceptors within the CNS of the fly Phormia regina in relation to the generalized insect ganglion. J Comp Neurol 322:16–34

    CAS  PubMed  Google Scholar 

  • Merritt DJ, Hawken A, Whitington PM (1993) The role of the cut gene in the specification of central projections by sensory axons in Drosophila. Neuron 10:741–752

    CAS  PubMed  Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    PubMed  Google Scholar 

  • Michel K, Amon T, Cokl A (1982) The morphology of the leg scolopidial organs in Nezara viridula (L.)(Heteroptera, Pentatomidae). Rev Can Biol Exp 42:139–150

    Google Scholar 

  • Moulins M (1976) Ultrastructure of chordotonal organs. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 387–426

    Google Scholar 

  • Mücke A (1991) Innervation pattern and sensory supply of the midleg of Schistocerca gregaria. Zoomorphology 110:175–187

    Google Scholar 

  • Mücke A, Lakes-Harlan R (1995) Central projections of sensory cells of the midleg of the locust, Schistocerca gregaria. Cell Tissue Res 280:391–400

    Google Scholar 

  • Murphey R (1971) Motor control of orientation to prey by the waterstrider Gerris remigis. Z vergl Physiol 72:150–167

    Google Scholar 

  • Nishino H (2000) Topographic mapping of the axons of the femoral chordotonal organ neurons in the cricket Gryllus bimaculatus. Cell Tiss Res 299:145–157

    CAS  Google Scholar 

  • Nishino H (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. Femoral chordotonal organ. J Comp Neurol 464:312–326

    Google Scholar 

  • Nishino H, Field LH (2003) Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. Complex tibial organ. J Comp Neurol 464:327–342

    Google Scholar 

  • Goodwyn PP, Katsumata-Wada A, Okada K (2009) Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). J Insect Physiol 55:855–861

    Google Scholar 

  • Pflüger H-J, Bräunig P, Hustert R (1988) The organization of mechanosensory neuropils in locust thoracic ganglia. Phil Trans R Soc Lond B 321:1–26

    Google Scholar 

  • Preuss T, Hengstenberg R (1992) Structure and kinematics of the prosternal organs and their influence on head position in the blowfly Calliphora erythrocephala Meig. J Comp Physiol A 171:483–493

    Google Scholar 

  • Robert D, Amoroso J, Hoy RR (1992) The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science 258:1135–1137

    CAS  PubMed  Google Scholar 

  • Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84

    Google Scholar 

  • Rössler W (1992) Funcional morphology and development of tibial organs in the legs I, II and III of the bushcricket Ephippiger ephippiger (Insecta, Ensifera). Zoomorphology 112:181–188

    Google Scholar 

  • Rössler W, Jatho M, Kalmring K (2006) The auditory-vibratory sensory system in bushcrickets. In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. CRC Press, Boca Raton, pp 35–69

    Google Scholar 

  • Sauer AE, Stein W (1999) Sensorimotor pathways processing vibratory signals from the femoral chordotonal organ of the stick insect. J Comp Physiol A 185:21–31

    Google Scholar 

  • Schäffer S, Lakes-Harlan R (2001) Embryonic development of the central projection of auditory afferents (Schistocerca gregaria, Orthoptera, Insecta). J Neurobiol 46:97–112

    PubMed  Google Scholar 

  • Schmitz J, Dean J, Kittmann R (1991) Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida). Zoomorphology 111:19–33

    Google Scholar 

  • Schneider W (1950) Über den Erschütterungssinn von Käfern und Fliegen. Z vergl Physiol 32:287–302

    Google Scholar 

  • Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: Histologie und Vibrationsschwellen. Z vergl Physiol 71:14–48

    Google Scholar 

  • Schön A (1911) Bau und Entwicklung des tibialen Chordotonalorgans bei der Honigbiene und bei Ameisen. Zool Jb Anat 31:439–472

    Google Scholar 

  • Shanbhag SR, Singh K, Singh RN (1992) Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Melgen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 21:311–322

    Google Scholar 

  • Shaw SR (1994) Re-evaluation of the absolute threshold and response mode of the most sensitive known “vibration” detector, the cockroach’s subgenual organ: a cochlea-like displacement threshold and a direct response to sound. J Neurobiol 25:1167–1185

    CAS  PubMed  Google Scholar 

  • Stein W, Sauer A (1999) Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol A 184:253–263

    Google Scholar 

  • Stiedl O, Kalmring K (1989) The importance of song and vibratory signals in the behaviour of the bushcricket Ephippiger ephippiger Fiebig (Orthoptera, Tettigoniidae): taxis by females. Oecologica 80:142–144

    CAS  Google Scholar 

  • Stölting H, Stumpner A, Lakes-Harlan R (2007) Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker). J Insect Physiol 53:444–454

    PubMed  Google Scholar 

  • Storm J, Kilpinen O (1998) Modelling the subgenual organ of the honeybee, Apis mellifera. Biol Cybern 78:175–182

    Google Scholar 

  • Strauß J, Lakes-Harlan R (2008a) Neuroanatomy and physiology of the complex tibial organ of an atympanate Ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evol 71:167–180

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2008b) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 511:81–91

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2009) The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 96:143–146

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2010) Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris IRISH 1986 (Orthoptera: Ensifera: Schizodactylidae). J Comp Neurol 518:4567–4580

    PubMed  Google Scholar 

  • Strauß J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol (in press). doi:10.1002/cne.23378

  • Stumpner A (1996) Tonotopic organization of the hearing organ in an bushcricket. Naturwissenschaften 83:81–84

    CAS  Google Scholar 

  • Stumpner A, von Helversen D (2001) Evolution and function of auditory system in insects. Naturwissenschaften 88:159–170

    CAS  PubMed  Google Scholar 

  • Stumpner A, Allen G, Lakes-Harlan R (2006) Hearing and frequency dependence of auditory interneurons in the parasitoid fly Homotrixa alleni (Tachinidae: Ormiini). J Comp Physiol A 193:113–125

    Google Scholar 

  • Theophilidis G (1986) The femoral chordotonal organ of Decticus albifrons (Orthoptera: Tettigoniidae)—I. Structure. Comp Biochem Physiol A 84:529–536

    Google Scholar 

  • Thurm U (2001) Evolutionary aspects of mechanoreception: from ciliates to man. In: Backhaus W (ed) Neuronal coding of perceptual systems. World Scientific Publishing, Singapore, pp 237–248

    Google Scholar 

  • Todi S, Sharma Y, Eberl DF (2004) Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc Res Tech 63:388–399

    PubMed Central  PubMed  Google Scholar 

  • Tracey WJ, Wilson R, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273

    CAS  PubMed  Google Scholar 

  • Vilhelmsen L, Nunzio I, Romani R, Basibuyuk H, Quicke D (2001) Host location and oviposition in a basal group of parasitic wasps: the subgenual organ, ovipositor apparatus and associated structures in the Orussidae (Hymenoptera, Insecta). Zoomorphology 121:63–84

    Google Scholar 

  • Vilhelmsen L, Turrisi GF, Beutel RG (2008) Distal leg morphology, subgenual organs and host detection in Stephanidae (Insecta, Hymenoptera). J Nat Hist 42:1649–1663

    Google Scholar 

  • Virant-Doberlet M, Cokl A, Zorovic M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. CRC Press, Boca Raton, pp 81–97

    Google Scholar 

  • Weidemann S, Keuper A (1987) Influence of vibratory signals on the phonotaxis of the gryllid Gryllus bimaculatus DeGeer (Ensifera: Gryllidae). Oecologia 74:316–318

    Google Scholar 

  • Weissman D (2001) Communication and reproductive behaviour in North American Jerusalem crickets (Stenopelmatus) (Orthoptera: Stenopelmatidae). In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI Publishing, Wallingford, pp 351–373

    Google Scholar 

  • Wiese K (1972) Das mechanorezeptive Beuteortungssystem von Notonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102

    Google Scholar 

  • Wittig G (1955) Untersuchungen am Thorax von Perla abdominalis Burm. (Larve und Imago). Zool Jhrb Anat Ontog 74:491–570

    Google Scholar 

  • Yan Z, Zhang W, He Y, Gorcuyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zill S, Büschges A, Schmitz J (2011) Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J Comp Physiol A 197:851–867

    Google Scholar 

  • zur Lage P, Jarman AP (1999) Antagonism of EGFR and Notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors. Development 126:3149–3157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Lakes-Harlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lakes-Harlan, R., Strauß, J. (2014). Functional Morphology and Evolutionary Diversity of Vibration Receptors in Insects. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_14

Download citation

Publish with us

Policies and ethics