Skip to main content

Metronomic Chemotherapy in Breast Cancers

  • Chapter
  • First Online:
Metronomic Chemotherapy

Abstract

Breast cancer is a common disease in women and its incidence is increasing. A proportion of breast cancer patients are metastatic at diagnosis or become metastatic during the follow-up period and need a personalized and/or target treatment approach. Metronomic chemotherapy can be regarded as a multi-targeted therapy for advanced disease, combining effects not only on tumor cells but also on their microenvironment by inhibiting tumor angiogenesis, stimulating anticancer immune response, and potentially inducing tumor dormancy. In the last 10 years, many phase I/II trials with metronomic chemotherapy in advanced breast cancer were published and will be described in details. Although this treatment approach was initially designed to maintain a stable disease as long as possible for metastatic patients that cannot be cured, as results become evident, researchers and clinicians started looking for new applications of this therapeutic strategy. Biomarkers are being developed to identify reliable surrogate markers of response and also to identify the proper patients to be treated. Nowadays, there are several ongoing trials to identify the optimal regimen and schedule of metronomic chemotherapy in the different settings of breast cancer patients. Most trials are aimed at patients with triple negative disease, because in this setting chemotherapy still represents one of the most reliable option. Finally, the potential development of metronomic chemotherapy in breast cancer is still a matter of research with particular attention to identify biomarkers and individual tumor characteristics that can better address the use of this treatment strategy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403

    Article  CAS  PubMed  Google Scholar 

  2. Brunner WN, Stephens RW, Dano K (2009) Control of invasion and metastasis. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 367–376

    Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  4. Sørlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    Article  CAS  PubMed  Google Scholar 

  6. Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399

    CAS  PubMed  Google Scholar 

  11. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  12. Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    Article  CAS  PubMed  Google Scholar 

  13. Ellis MJ, Ding L, Shen D et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yap TA, Gerlinger M, Futreal PA et al (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4:127ps10

    Article  PubMed  Google Scholar 

  16. Sethi N, Kang Y (2011) Unravelling the complexity of metastasis – molecular understanding and targeted therapies. Nat Rev Cancer 11:735–748

    Article  CAS  PubMed  Google Scholar 

  17. Pasquier E, Kavallaris M, André N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465

    Article  PubMed  Google Scholar 

  18. Colleoni M, Rocca A, Sandri MT et al (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13(1):73–80

    Article  CAS  PubMed  Google Scholar 

  19. Orlando L, Cardillo A, Rocca A et al (2006) Prolonged clinical benefit with metronomic chemotherapy in patients with metastatic breast cancer. Anti-Cancer Drugs 17:961–967

    Article  CAS  PubMed  Google Scholar 

  20. Colleoni M, Orlando L, Sanna G et al (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17(2):232–238

    Article  CAS  PubMed  Google Scholar 

  21. Wong NS, Buckman RA, Clemons M et al (2010) Phase I/II trial of metronomic chemotherapy with daily dalteparin and cyclophosphamide, twice-weekly methotrexate, and daily prednisone as therapy for metastatic breast cancer using vascular endothelial growth factor and soluble vascular endothelial growth factor receptor levels as markers of response. J Clin Oncol 28((5):723–730

    Article  CAS  PubMed  Google Scholar 

  22. Orlando L, Cardillo A, Ghisini R et al (2006) Trastuzumab in combination with metronomic cyclophosphamide and methotrexate in patients with HER-2 positive metastatic breast cancer. BMC Cancer 6:225

    Article  PubMed Central  PubMed  Google Scholar 

  23. Burstein HJ, Spigel D, Kindsvogel K et al (2005) Metronomic chemotherapy with and without bevacizumab for advanced breast cancer: a randomized phase II study. In: 28th annual San Antonio breast cancer symposium, San Antonio, 8–11 Dec 2005, (abstr 4)

    Google Scholar 

  24. Dellapasqua S, Bertolini F, Bagnardi V et al (2008) Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26(30):4899–4905

    Article  CAS  PubMed  Google Scholar 

  25. Montagna E, Cancello G, Bagnardi V et al (2012) Metronomic chemotherapy combined with bevacizumab and erlotinib in patients with metastatic HER2-negative breast cancer: clinical and biological activity. Clin Breast Cancer 12(3):207–214

    Article  CAS  PubMed  Google Scholar 

  26. García-Sáenz JA, Martín M, Calles A et al (2008) Bevacizumab in combination with metronomic chemotherapy in patients with anthracycline- and taxane-refractory breast cancer. J Chemother 20(5):632–639

    Article  PubMed  Google Scholar 

  27. Mayer EL, Isakoff SJ, Klement G et al (2012) Combination antiangiogenic therapy in advanced breast cancer: a phase 1 trial of vandetanib, a VEGFR inhibitor, and metronomic chemotherapy, with correlative platelet proteomics. Breast Cancer Res Treat 136(1):169–178

    Article  CAS  PubMed  Google Scholar 

  28. Wang Z, Lu J, Leaw S et al (2012) An all-oral combination of metronomic cyclophosphamide plus capecitabine in patients with anthracycline- and taxane-pretreated metastatic breast cancer: a phase II study. Cancer Chemother Pharmacol 69(2):515–522

    Article  CAS  PubMed  Google Scholar 

  29. Dellapasqua S, Mazza M, Rosa D et al (2011) Pegylated liposomal doxorubicin in combination with low-dose metronomic cyclophosphamide as preoperative treatment for patients with locally advanced breast cancer. Breast 20(4):319–323

    Article  PubMed  Google Scholar 

  30. Munzone E, Di Pietro A, Goldhirsch A et al (2010) Metronomic administration of pegylated liposomal-doxorubicin in extensively pre-treated metastatic breast cancer patients: a mono-institutional case-series report. Breast 19(1):33–37

    Article  CAS  PubMed  Google Scholar 

  31. Addeo R, Sgambato A, Cennamo G et al (2010) Low-dose metronomic oral administration of vinorelbine in the first-line treatment of elderly patients with metastatic breast cancer. Clin Breast Cancer 10(4):301–306

    Article  CAS  PubMed  Google Scholar 

  32. Saridaki Z, Malamos N, Kourakos P et al (2012) A phase I trial of oral metronomic vinorelbine plus capecitabine in patients with metastatic breast cancer. Cancer Chemother Pharmacol 69(1):35–42

    Article  CAS  PubMed  Google Scholar 

  33. Addeo R, Sperlongano P, Montella L et al (2012) Protracted low dose of oral vinorelbine and temozolomide with whole-brain radiotherapy in the treatment for breast cancer patients with brain metastases. Cancer Chemother Pharmacol 70(4):603–609

    Article  CAS  PubMed  Google Scholar 

  34. Aurilio G, Munzone E, Botteri E et al (2012) Oral metronomic cyclophosphamide and methotrexate plus fulvestrant in advanced breast cancer patients: a mono-institutional case-cohort report. Breast J 18(5):470–474

    Article  CAS  PubMed  Google Scholar 

  35. Bottini A, Generali D, Brizzi MP et al (2006) Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 24(22):3623–3628

    Article  CAS  PubMed  Google Scholar 

  36. Licchetta A, Correale P, Migali C et al (2010) Oral metronomic chemo-hormonal-therapy of metastatic breast cancer with cyclophosphamide and megestrol acetate. J Chemother 22(3):201–204

    Article  CAS  PubMed  Google Scholar 

  37. Prat A, Parker AS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  PubMed Central  PubMed  Google Scholar 

  38. Coulson AS, Summers LJ, Lindahl-Kiessling K et al (1970) The effect of two soluble thalidomide derivatives on lymphocytes stimulation. Clin Exp Immunol 7:241–247

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nogueira AC, Neubert R, Helge H, Neubert D (1994) Thalidomide and the immune system: Simultaneous up and down regulation of different integrin receptor on human white blood cells. Life Sci 55:77–92

    Article  CAS  PubMed  Google Scholar 

  40. Sampaio EP, Sarno EN, Galilly R et al (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703

    Article  CAS  PubMed  Google Scholar 

  41. D'Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kruse FE, Joussen AM, Rohrschneider K et al (1998) Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol 236:461–466

    Article  CAS  PubMed  Google Scholar 

  43. Wolff JE, Molenkamp G, Hotfilder M et al (1997) Dexamethasone inhibits glioma-induced formation of capillary like structures in vitro and angiogenesis in vivo. Klin Paediatr 209:275–277

    Article  CAS  Google Scholar 

  44. Wolff JE, Guerin C, Laterra J et al (1993) Dexamethasone reduces vascular density and plasminogen activator activity in 9 L rat brain tumors. Brain Res 604:79–85

    Article  CAS  PubMed  Google Scholar 

  45. Nauck M, Karakiulakis G, Perruchoud AP et al (1998) Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol 341:309–315

    Article  CAS  PubMed  Google Scholar 

  46. Klement G, Baruchel S, Rak J (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Holden SN, Eckhardt SG, Basser R et al (2005) Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 16(8):1391–1397

    Article  CAS  PubMed  Google Scholar 

  48. O’Brien ME (2008) Single-agent treatment with pegylated liposomal doxorubicin for metastatic breast cancer. Anticancer Drugs 9(1):1–7

    Article  Google Scholar 

  49. Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4(3):95–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Belotti D, Vergani V, Drudis T et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    CAS  PubMed  Google Scholar 

  51. Hotchkiss KA, Ashton AW, Mahmood R et al (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1:1191–1200

    CAS  PubMed  Google Scholar 

  52. Vacca A, Iurlaro M, Ribatti D et al (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155

    CAS  PubMed  Google Scholar 

  53. Rowinsky EK, Noe DA, Trump DL et al (1994) Pharmacokinetic, bioavailability, and feasibility study of oral vinorelbine in patients with solid tumors. J Clin Oncol 12:1754–1763

    CAS  PubMed  Google Scholar 

  54. Depierre A, Freyer G, Jassem J et al (2001) Oral vinorelbine: feasibility and safety profile. Ann Oncol 12:1677–1681

    Article  CAS  PubMed  Google Scholar 

  55. Briasoulis E, Aravantinos G, Kouvatseas G et al (2013) Dose selection trial of metronomic oral vinorelbine monotherapy in patients with metastatic cancer: a hellenic cooperative oncology group clinical translational study. BMC Cancer 13(1):263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Rajdev L, Negassa A, Dai Q et al (2011) Phase I trial of metronomic oral vinorelbine in patients with advanced cancer. Cancer Chemother Pharmacol 68(5):1119–1124

    Article  CAS  PubMed  Google Scholar 

  57. Briasoulis E, Pappas P, Puozzo C et al (2009) Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory cancer. Clin Cancer Res 15(20):6454–6461

    Article  CAS  PubMed  Google Scholar 

  58. Le Deley MC, Vassal G, Taïbi A et al (2005) High cumulative rate of secondary leukemia after continuous etoposide treatment for solid tumors in children and young adults. Pediatr Blood Cancer 45:25–31

    Article  PubMed  Google Scholar 

  59. De Vita S, De Matteis S, Laurenti L et al (2005) Secondary Ph+ acute lymphoblastic leukemia after temozolomide. Ann Hematol 84:760–762

    Article  PubMed  Google Scholar 

  60. Bertolini F, Paul S, Mancuso P et al (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    CAS  PubMed  Google Scholar 

  61. Shaked Y, Bertolini F, Man S et al (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate markers and analysis of antiangiogenesis. Cancer Cell 7:101–111

    CAS  PubMed  Google Scholar 

  62. Shaked Y, Emmenegger U, Man S et al (2005) The optimal biological dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Mancuso P, Colleoni M, Calleri A et al (2006) Circulating endothelial cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108:452–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Torrisi R, Bagnardi V, Cardillo A et al (2008) Preoperative bevacizumab combined with letrozole and chemotherapy in locally advanced ER- and/or PgR-positive breast cancer: clinical and biological activity. Br J Cancer 99:1564–1571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bertolini F, Marighetti P, Shaked Y (2010) Cellular and soluble markers of tumor angiogenesis: from patient selection to the identification of the most appropriate post-resistance therapy. Biochim Biophys Acta Rev Cancer 1806:131–137

    Article  CAS  Google Scholar 

  66. Dellapasqua S, Bagnardi V, Bertolini F et al (2012) Increased mean corpuscular volume of red blood cells predicts response to metronomic capecitabine and cyclophosphamide in combination with bevacizumab. Breast 21:209–213

    Google Scholar 

  67. Bocci G, Tuccori M, Emmenegger U et al (2005) Cyclophosphamide-methotrexate ‘metronomic’ chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann Oncol 16(8):1243–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Munzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munzone, E., Bertolini, F., Colleoni, M. (2014). Metronomic Chemotherapy in Breast Cancers. In: Bocci, G., Francia, G. (eds) Metronomic Chemotherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43604-2_6

Download citation

Publish with us

Policies and ethics