Skip to main content

Mechanisms of Action of Low-Dose Metronomic Chemotherapy

  • Chapter
  • First Online:
Metronomic Chemotherapy
  • 754 Accesses

Abstract

Evidence from a growing body of preclinical and clinical studies points to the efficacy of continuously administrating anticancer chemotherapeutic drugs in low doses. This relatively new treatment strategy concept is called low-dose metronomic (LDM) chemotherapy. The therapeutic efficacy of LDM has been assessed for reducing the tumor load during the acute phase and in delaying relapse during the maintenance phase. The major benefits found in using LDM include the lack of major toxicities or complications as compared to conventional chemotherapy regimens and improved quality of life. Traditional therapeutic modalities in oncology aim toward more specific tumor targets at the tumor microenvironment, whereas LDM chemotherapy acts on a broad spectrum of mechanisms, some of which are still not clear. We will discuss in this chapter several possible LDM chemotherapy anticancer mechanisms of action. Initially, LDM was considered an antiangiogenic treatment strategy; however, in the last decade additional preclinical studies uncovered other possible mechanisms including enhancing the antitumor immune response, substantially increasing the efficacy of targeted drugs by various mechanisms, targeting a subset of chemotherapy-resistant tumor cells, and blunting host response effects found following conventional therapy. While LDM chemotherapy is currently undergoing phase III clinical evaluation, its mechanisms of action are only partially understood. Elucidating LDM’s mechanisms of action will give physicians an additional major weapon to deploy in the comprehensive management of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browder T, Butterfield CE, Kraling BM, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    CAS  PubMed  Google Scholar 

  2. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shaked Y, Henke E, Roodhart JM, Mancuso P, Langenberg MH, Colleoni M, Daenen LG, Man S, Xu P, Emmenegger U et al (2008) Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell 14:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bocci G, Nicolaou KC, Kerbel R (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    CAS  PubMed  Google Scholar 

  5. Fontana A, Galli L, Fioravanti A, Orlandi P, Galli C, Landi L, Bursi S, Allegrini G, Fontana E, Di Marsico R et al (2009) Clinical and pharmacodynamic evaluation of metronomic cyclophosphamide, celecoxib, and dexamethasone in advanced hormone-refractory prostate cancer. Clin Cancer Res 15:4954–4962

    Article  CAS  PubMed  Google Scholar 

  6. Kamat AA, Kim TJ, Landen CN Jr, Lu C, Han LY, Lin YG, Merritt WM, Thaker PH, Gershenson DM, Bischoff FZ et al (2007) Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res 67:281–288

    Article  CAS  PubMed  Google Scholar 

  7. Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, Son MJ, Song HS, Shin HJ, Lee DS et al (2006) Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 16:33–39

    PubMed  Google Scholar 

  8. Murray A, Little SJ, Stanley P, Maraveyas A, Cawkwell L (2010) Sorafenib enhances the in vitro anti-endothelial effects of low dose (metronomic) chemotherapy. Oncol Rep 24:1049–1058

    Article  CAS  PubMed  Google Scholar 

  9. Naganuma Y, Choijamts B, Shirota K, Nakajima K, Ogata S, Miyamoto S, Kawarabayashi T, Emoto M (2011) Metronomic doxifluridine chemotherapy combined with the anti-angiogenic agent TNP-470 inhibits the growth of human uterine carcinosarcoma xenografts. Cancer Sci 102:1545–1552

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Mokhtari RB, Sheikh R, Wu B, Zhang L, Xu P, Man S, Oliveira ID, Yeger H, Kerbel RS et al (2011) Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin Cancer Res 17:5656–5667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Folkman J (1996) Tumor angiogenesis and tissue factor. Nat Med 2:167–168

    Article  CAS  PubMed  Google Scholar 

  12. Bouck N, Polverini PJ, Tolsma SS, Frazier WA, Good D (1991) Tumor suppressor gene control of angiogenesis. J Cell Biochem Suppl 15F:216 (Abstr)

    Google Scholar 

  13. Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin-1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A 100:12917–12922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hamano Y, Sugimoto H, Soubasakos MA, Kieran M, Olsen BR, Lawler J, Sudhakar A, Kalluri R (2004) Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64:1570–1574

    Article  CAS  PubMed  Google Scholar 

  15. Damber JE, Vallbo C, Albertsson P, Lennernas B, Norrby K (2006) The anti-tumour effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 58:354–360

    Article  CAS  PubMed  Google Scholar 

  16. Panigrahy D, Kaipainen A, Butterfield CE, Chaponis DM, Laforme AM, Folkman J, Kieran MW (2010) Inhibition of tumor angiogenesis by oral etoposide. Exp Ther Med 1:739–746

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Loven D, Be’ery E, Yerushalmi R, Koren C, Sulkes A, Lavi I, Shaked Y, Fenig E (2008) Daily low-dose/continuous capecitabine combined with neo-adjuvant irradiation reduces VEGF and PDGF-BB levels in rectal carcinoma patients. Acta Oncol 47:104–109

    Article  CAS  PubMed  Google Scholar 

  18. Colleoni M, Orlando L, Sanna G, Rocca A, Maisonneuve P, Peruzzotti G, Ghisini R, Sandri MT, Zorzino L, Nole F et al (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17:232–238

    Article  CAS  PubMed  Google Scholar 

  19. Lansiaux A, Salingue S, Dewitte A, Clisant S, Penel N (2012) Circulating thrombospondin 1 level as a surrogate marker in patients receiving cyclophosphamide-based metronomic chemotherapy. Invest New Drugs 30:403–404

    Article  CAS  PubMed  Google Scholar 

  20. Tas F, Duranyildiz D, Soydinc HO, Cicin I, Selam M, Uygun K, Disci R, Yasasever V, Topuz E (2008) Effect of maximum-tolerated doses and low-dose metronomic chemotherapy on serum vascular endothelial growth factor and thrombospondin-1 levels in patients with advanced nonsmall cell lung cancer. Cancer Chemother Pharmacol 61:721–725

    Article  CAS  PubMed  Google Scholar 

  21. Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777

    Article  CAS  PubMed  Google Scholar 

  22. Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: from promiscuity to surrogate marker and target identification. Nat Rev Cancer 6:835–845

    Article  CAS  PubMed  Google Scholar 

  23. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  CAS  PubMed  Google Scholar 

  24. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    CAS  PubMed  Google Scholar 

  25. Shaked Y, Emmengger U, Man S, Cervi D, Bertolini F, Ben-David Y, Kerbel RS (2005) The optimal biological dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y et al (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111

    CAS  PubMed  Google Scholar 

  27. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787

    Article  CAS  PubMed  Google Scholar 

  28. Farace F, Massard C, Borghi E, Bidart JM, Soria JC (2007) Vascular disrupting therapy-induced mobilization of circulating endothelial progenitor cells. Ann Oncol 18:1421–1422

    Article  CAS  PubMed  Google Scholar 

  29. Daenen LG, Shaked Y, Man S, Xu P, Voest EE, Hoffman RM, Chaplin DJ, Kerbel RS (2009) Low-dose metronomic cyclophosphamide combined with vascular disrupting therapy induces potent antitumor activity in preclinical human tumor xenograft models. Mol Cancer Ther 8:2872–2881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mancuso P, Colleoni M, Calleri A, Orlando L, Maisonneuve P, Pruneri G, Agliano A, Goldhirsch A, Shaked Y, Kerbel RS et al (2006) Circulating endothelial cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108:452–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Noberasco C, Spitaleri G, Mancuso P, Zorzino L, Radice D, Milani A, Rocca A, Bertolini F, Sandri MT, Curigliano G et al (2009) Safety, tolerability and biological effects of long-term metronomic administration of non-cytotoxic anti-angiogenic agents. Oncology 77:358–365

    Article  CAS  PubMed  Google Scholar 

  32. Shao YY, Lin ZZ, Chen TJ, Hsu C, Shen YC, Hsu CH, Cheng AL (2011) High circulating endothelial progenitor levels associated with poor survival of advanced hepatocellular carcinoma patients receiving sorafenib combined with metronomic chemotherapy. Oncology 81:98–103

    Article  CAS  PubMed  Google Scholar 

  33. Calleri A, Bono A, Bagnardi V, Quarna J, Mancuso P, Rabascio C, Dellapasqua S, Campagnoli E, Shaked Y, Goldhirsch A et al (2009) Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Cancer Res 15:7652–7657

    Article  CAS  PubMed  Google Scholar 

  34. Francia G, Shaked Y, Hashimoto K, Sun J, Yin M, Cesta C, Xu P, Man S, Hackl C, Stewart J et al (2012) Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumor effects in the absence of inhibition of systemic vasculogenesis. Mol Cancer Ther 11:680–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12:557–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b(+)Gr1(+) myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  37. Loven D, Hasnis E, Bertolini F, Shaked Y (2012) Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 18(3–4):193–201

    PubMed  Google Scholar 

  38. Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659

    Article  CAS  PubMed  Google Scholar 

  39. Chan WM, Rahman MM, McFadden G (2013) Oncolytic myxoma virus: the path to clinic. Vaccine 31(39):4252–4258

    Article  PubMed Central  PubMed  Google Scholar 

  40. Qiao J, Wang H, Kottke T, White C, Twigger K, Diaz RM, Thompson J, Selby P, de Bono J, Melcher A et al (2008) Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin Cancer Res 14:259–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ingemarsdotter CK, Baird SK, Connell CM, Oberg D, Hallden G, McNeish IA (2010) Low-dose paclitaxel synergizes with oncolytic adenoviruses via mitotic slippage and apoptosis in ovarian cancer. Oncogene 29:6051–6063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Cheema TA, Kanai R, Kim GW, Wakimoto H, Passer B, Rabkin SD, Martuza RL (2011) Enhanced antitumor efficacy of low-dose Etoposide with oncolytic herpes simplex virus in human glioblastoma stem cell xenografts. Clin Cancer Res 17:7383–7393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Onimaru M, Ohuchida K, Nagai E, Mizumoto K, Egami T, Cui L, Sato N, Uchino J, Takayama K, Hashizume M et al (2010) Combination with low-dose gemcitabine and hTERT-promoter-dependent conditionally replicative adenovirus enhances cytotoxicity through their crosstalk mechanisms in pancreatic cancer. Cancer Lett 294:178–186

    Article  CAS  PubMed  Google Scholar 

  44. Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A, Romano V, Rouvinen N, Tuuminen T, Laasonen L et al (2011) Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther 19:1737–1746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liikanen I, Ahtiainen L, Hirvinen ML, Bramante S, Cerullo V, Nokisalmi P, Hemminki O, Diaconu I, Pesonen S, Koski A et al (2013) Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 21:1212–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Opyrchal M, Aderca I, Galanis E (2009) Phase I clinical trial of locoregional administration of the oncolytic adenovirus ONYX-015 in combination with mitomycin-C, doxorubicin, and cisplatin chemotherapy in patients with advanced sarcomas. Methods Mol Biol 542:705–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Black AJ, Morris DG (2012) Clinical trials involving the oncolytic virus, reovirus: ready for prime time? Expert Rev Clin Pharmacol 5:517–520

    Article  CAS  PubMed  Google Scholar 

  48. Shaked Y, Kerbel RS (2007) Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res 67:7055–7058

    Article  CAS  PubMed  Google Scholar 

  49. Shaked Y, Tang T, Woloszynek J, Daenen LG, Man S, Xu P, Cai SR, Arbeit JM, Voest EE, Chaplin DJ et al (2009) Contribution of granulocyte colony-stimulating factor to the acute mobilization of endothelial precursor cells by vascular disrupting agents. Cancer Res 69:7524–7528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gingis-Velitski S, Loven D, Benayoun L, Munster M, Bril R, Voloshin T, Alishekevitz D, Bertolini F, Shaked Y (2011) Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. Cancer Res 71:6986–6996

    Article  CAS  PubMed  Google Scholar 

  51. Ebos JM, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A 104:17069–17074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    Article  CAS  PubMed  Google Scholar 

  53. Shaked Y, Emmenegger U, Francia G, Chen L, Lee CR, Man S, Paraghamian A, Ben David Y, Kerbel RS (2005) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051

    Article  CAS  PubMed  Google Scholar 

  54. Vives M, Ginesta MM, Gracova K, Graupera M, Casanovas O, Capella G, Serrano T, Laquente B, Vinals F (2013) Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 133(10):2464–2472

    Article  CAS  PubMed  Google Scholar 

  55. Bellmunt J, Trigo JM, Calvo E, Carles J, Perez-Gracia JL, Rubio J, Virizuela JA, Lopez R, Lazaro M, Albanell J (2010) Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06). Lancet Oncol 11:350–357

    Article  CAS  PubMed  Google Scholar 

  56. Pasquier E, Kavallaris M, Andre N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465

    Article  PubMed  Google Scholar 

  57. Kerbel RS, Kamen BA (2004) Antiangiogenic basis of low-dose metronomic chemotherapy. Nature Rev Cancer 4:423–436

    Article  CAS  Google Scholar 

  58. Hutson TE, Figlin RA (2007) Evolving role of novel targeted agents in renal cell carcinoma. Oncology (Williston Park) 21:1175–1180

    Google Scholar 

  59. Merritt WM, Nick AM, Carroll AR, Lu C, Matsuo K, Dumble M, Jennings N, Zhang S, Lin YG, Spannuth WA et al (2010) Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Mol Cancer Ther 9:985–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hashimoto K, Man S, Xu P, Cruz-Munoz W, Tang T, Kumar R, Kerbel RS (2010) Potent preclinical impact of metronomic low-dose oral topotecan combined with the antiangiogenic drug pazopanib for the treatment of ovarian cancer. Mol Cancer Ther 9:996–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  62. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I, Monestiroli S et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457:51–56

    Article  CAS  PubMed  Google Scholar 

  63. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  CAS  PubMed  Google Scholar 

  64. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  65. Benayoun L, Gingis-Velitski S, Voloshin T, Segal E, Segev R, Munster M, Bril R, Satchi-Fainaro R, Scherer SJ, Shaked Y (2012) Tumor-initiating cells of various tumor types exhibit differential angiogenic properties and react differently to antiangiogenic drugs. Stem Cells 30:1831–1841

    Article  CAS  PubMed  Google Scholar 

  66. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478:399–403

    Article  CAS  PubMed  Google Scholar 

  67. Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM, Kerbel RS (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Martin-Padura I, Marighetti P, Agliano A, Colombo F, Larzabal L, Redrado M, Bleau AM, Prior C, Bertolini F, Calvo A (2012) Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Invest 92(7):952–966

    Article  CAS  PubMed  Google Scholar 

  69. Kerbel RS (2007) Improving conventional or low dose metronomic chemotherapy with targeted antiangiogenic drugs. Cancer Res Treat 39:150–159

    Article  PubMed Central  PubMed  Google Scholar 

  70. Pasquier E, Kieran MW, Sterba J, Shaked Y, Baruchel S, Oberlin O, Kivivuori MS, Peyrl A, Diawarra M, Casanova M et al (2011) Moving forward with metronomic chemotherapy: meeting report of the 2nd International Workshop on Metronomic and Anti-Angiogenic Chemotherapy in Paediatric Oncology. Transl Oncol 4:203–211

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the European Research Council (under FP-7 program) and Israel Cancer Research Fund to YS. The authors would like to thank Prof. Giulio Francia for the critical reading of this chapter. The authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Shaked PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fremder, E., Shaked, Y. (2014). Mechanisms of Action of Low-Dose Metronomic Chemotherapy. In: Bocci, G., Francia, G. (eds) Metronomic Chemotherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43604-2_2

Download citation

Publish with us

Policies and ethics