Skip to main content

Uncertainties Due to Within-Species Variation in Comparative Studies: Measurement Errors and Statistical Weights

  • Chapter

Abstract

Comparative studies investigating evolutionary questions are generally concerned with interspecific variation of trait values, while variations observed within species are inherently assumed to be unimportant. However, beside measurement errors, several biological mechanisms (such as behaviors that flexibly change within individuals, differences between sexes or other groups of individuals, spatial, or temporal variations across populations of the same species) can generate considerable variation in the focal characters at the within-species level. Such within-species variations can raise uncertainties and biases in parameter estimates, especially when the data are hierarchically structured along a phylogeny, thus they require appropriate statistical treatment. This chapter reviews different analytical solutions that have been recently developed to account for the unwanted effect of within-species variation. However, I will also emphasize that within-species variation should not necessarily be regarded as a confounder, but in some cases, it can be subject to evolutionary forces and delineate interesting biological questions. The argumentation will be accompanied with a detailed practical material that will help users adopt the methodology to the data at hand.

The original version of this chapter was revised: Online Practical Material website has been updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-662-43550-2_23

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adolph SC, Hardin JS (2007) Estimating phenotypic correlations: correcting for bias due to intraindividual variability. Funct Ecol 21(1):178–184

    Article  Google Scholar 

  • Arnold C, Nunn CL (2010) Phylogenetic targeting of research effort in evolutionary biology. Am Nat 176:601–612

    Article  PubMed  Google Scholar 

  • Ashton KG (2004) Comparing phylogenetic signal in intraspecific and interspecific body size datasets. J Evol Biol 17:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Blomberg S, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more laible. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bollen KA (1989) Structural equations with latent variables. Wiley, New York

    Book  Google Scholar 

  • Buonaccorsi JP (2010) Measurement error: models, methods, and applications. Chapman and Hall, New York

    Book  Google Scholar 

  • Caro TM, Roper R, Young M, Dank GR (1979) Inter-observer reliability. Behaviour 69:303–315. doi:10.1163/156853979x00520

    Article  Google Scholar 

  • Chesher A (1991) The effect of measurement error. Biometrika 78(3):451–462. doi:10.1093/biomet/78.3.451

    Article  Google Scholar 

  • Cheverud JM, Dow MM, Leutenegger W (1985) The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism of body weight among primates. Evolution 39:1335–1351

    Article  PubMed  Google Scholar 

  • Christman MC, Jernigan RW, Culver D (1997) A comparison of two models for estimating phylogenetic effect on trait variation. Evolution 51(1):262–266. doi:10.2307/2410979

    Article  PubMed  Google Scholar 

  • Cornillon PA, Pontier D, Rochet MJ (2000) Autoregressive models for estimating phylogenetic and environmental effects: accounting for within-species variations. J Theor Biol 202(4):247–256. doi:10.1006/jtbi.1999.1040

    Article  CAS  PubMed  Google Scholar 

  • de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12: doi:10.1186/1471-2148-12-102

    Article  PubMed  PubMed Central  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B Methodol 39(1):1–38

    Google Scholar 

  • Doughty P (1996) Statistical analysis of natural experiments in evolutionary biology: comments on recent criticisms on the use of comparative methods to study adaptation. Am Nat 148:943–956

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York (2nd edn)

    Google Scholar 

  • Edwards SV, Kot M (1995) Comparative methods at the species level: geographic variation in morphology and group size in Grey-crowned Babblers (Pomatostomus temporalis). Evolution 49:1134–1146

    PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Felsenstein J (2002) Contrasts for a within-species comparative method. In: Slatkin M, Veuille M (eds) Modern developments in theoretical population genetics. Oxford University Press, Oxford, pp 118–129

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725

    Article  PubMed  Google Scholar 

  • Fisher DO, Blomberg SP, Owens IPF (2003) Extrinsic versus intrinsic factors in the decline and extinction of Australian marsupials. Proc R Soc Lond Ser B-Biol Sci 270(1526):1801–1808

    Article  Google Scholar 

  • Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22(7):1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  • Garamszegi LZ, Møller AP (2010) Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol Rev 85:797–805

    PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Syst Biol 60:876–880

    Article  PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2012) Untested assumptions about within-species sample size and missing data in interspecific studies. Behav Ecol Sociobiol 66:1363–1373

    Article  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Ieee Transactions on Pattern Analysis and Machine Intelligence 6(6):721–741

    Article  Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: statistics and a null model for estimating phylogenetic effects. Syst Zool 39(3):227–241. doi:10.2307/2992183

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc B 326:119–157

    Article  CAS  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  CAS  PubMed  Google Scholar 

  • Hansen TF, Bartoszek K (2012) Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies. Syst Biol 61:413–425

    Article  PubMed  Google Scholar 

  • Harmon LJ, Losos JB (2005) The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59:2705–2710

    Article  PubMed  Google Scholar 

  • Hastings WK (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–109. doi:10.2307/2334940

    Article  Google Scholar 

  • Housworth EA, Martins EP, Lynch M (2004) The phylogenetic mixed model. Am Nat 163:84–96

    Article  PubMed  Google Scholar 

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270

    Article  PubMed  Google Scholar 

  • Judge GG, Griffiths WE, Hill RC, Lutkepohl H, Lee T-C (1985) The theory and practice of econometrics. Wiley, New York

    Google Scholar 

  • Kreft IGG, de Leeuw J, Aiken LS (1995) The effect of different forms of centering in hierarchical linear models. Multivar Behav Res 30:1–21

    Article  CAS  Google Scholar 

  • Kutsukake N, Innan H (2012) Simulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny. Evolution (in press)

    Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45(5):1065–1080

    Article  PubMed  Google Scholar 

  • Madansky A (1959) The fitting of straight lines when both variables are subject to error. J Am Stat Assoc 54:173–205

    Article  Google Scholar 

  • Manisha S (2001) An estimation of population mean in the presence of measurement errors. J Indian Soc Agric Stat 54:13–18

    Google Scholar 

  • Martins EP (1994) Estimating the rate of phenotypic evolution from comparative data. Am Nat 144:193–209

    Article  Google Scholar 

  • Martins EP (2004) COMPARE, version 4.6b. Computer programs for the statistical analysis of comparative data. Distributed by the author at http://compare.bio.indiana.edu/, Department of Biology, Indiana University, Bloomington IN

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Google Scholar 

  • Møller AP, Garamszegi LZ (2012) Between individual variation in risk taking behavior and its life history consequences. Behav Ecol 23:843–853

    Article  Google Scholar 

  • Monkkonen M, Martin TE (2000) Sensitivity of comparative analyses to population variation in trait values: clutch size and cavity excavation tendencies. J Avian Biol 31(4):576–579. doi:10.1034/j.1600-048X.2000.310417.x

    Article  Google Scholar 

  • Nakagawa S, Freckleton R (2008) Missing inaction: the dangers of ignoring missing data. Trends Ecol Evol 23:592–596. doi:10.1016/j.tree.2008.06.014

    Article  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Irwin, Chicago

    Google Scholar 

  • Paradis E (2011) Analysis of phylogenetics and evolution with R, 2nd edn. Springer, Berlin

    Google Scholar 

  • Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci 11:247–251

    CAS  PubMed  Google Scholar 

  • Purvis A, Webster AJ (1999) Phylogenetically independent comparisons and primate phylogeny. In: Lee PC (ed) Comparative primate socioecology. Cambridge University Press, Cambridge, pp 44–70

    Chapter  Google Scholar 

  • Reed GF, Lynn F, Meade BD (2002) Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 9(6):1235–1239. doi:10.1128/cdli.9.6.1235-1239.2002

    Article  PubMed  PubMed Central  Google Scholar 

  • Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329. doi:10.1111/j.2041-210X.2010.00044.x

    Article  Google Scholar 

  • Revell LJ, Reynolds RG (2012) A new Bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution 66(9):2697–2707. doi:10.1111/j.1558-5646.2012.01645.x

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Starck JM (1996) Applications of phylogenetically independent contrasts: a mixed progress report. Oikos 77(1):167–172

    Article  Google Scholar 

  • Snijders TAB, Bosker RJ (1999) Multilevel analysis—an introduction to basic and advanced multilevel modelling. Sage, London

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W. H. Freeman and Co, New York

    Google Scholar 

  • Stone GN, Nee S, Felsenstein J (2011) Controlling for non-independence in comparative analysis of patterns across populations within species. Philos Trans R Soc Lond B Biol Sci 366:1410–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Taper ML, Marquet PA (1996) How do species really divide resources? Am Nat 147:1072–1086

    Article  Google Scholar 

  • van de Pol MV, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77(3):753–758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Zsolt Garamszegi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garamszegi, L.Z. (2014). Uncertainties Due to Within-Species Variation in Comparative Studies: Measurement Errors and Statistical Weights. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_7

Download citation

Publish with us

Policies and ethics