Skip to main content

Abstract

Community phylogenetics combines ideas from community ecology and evolutionary biology, using species phylogeny to explore the processes underlying ecological community assembly. Here, we describe the development of the field’s comparative methods and their roots in conservation biology, biodiversity quantification, and macroevolution. Next, we review the multitude of community phylogenetic structure metrics and place each into one of four classes: shape, evenness, dispersion, and dissimilarity. Shape metrics examine the structure of an assemblage phylogeny, while evenness metrics incorporate species abundances. Dispersion metrics examine assemblages given a phylogeny of species that could occupy those assemblages (the source pool), while dissimilarity metrics compare phylogenetic structure between assemblages. We then examine how metrics perform in simulated communities that vary in their phylogenetic structure. We provide an example of model-based approaches and argue that they are a promising area of future research in community phylogenetics. Code to reproduce all these analyses is available in the Online Practical Material (http://www.mpcm-evolution.com). We conclude by discussing future research directions for the field as a whole.

The original version of this chapter was revised: Online Practical Material website has been updated. The erratum to this chapter is available at https://doi.org/10.1007/978-3-662-43550-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    Article  CAS  Google Scholar 

  • Agapow P-M, Purvis A (2002) Power of eight tree shape statistics to detect nonrandom diversification: a comparison by simulation of two models of cladogenesis. Syst Biol 51(6):866–872

    Article  Google Scholar 

  • Altschul SF, Lipman DJ (1990) Equal animals. Nature 348:493–494

    Article  CAS  Google Scholar 

  • Bryant JA et al (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci 105(S1):11505–11511

    Article  CAS  Google Scholar 

  • Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Lett 16(10):1234–1244

    Article  Google Scholar 

  • Cadotte MW et al (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett 13(1):96–105

    Article  Google Scholar 

  • Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87(7):S109–S122

    Article  Google Scholar 

  • Cavender-Bares J et al (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163(6):823–843

    Article  CAS  Google Scholar 

  • Cavender-Bares J et al (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  Google Scholar 

  • Colless DH (1982) Review of phylogenetics: the theory and practice of phylogenetic systematics. Syst Zool 31(1):100–104

    Article  Google Scholar 

  • Cooper N, Jetz W, Freckleton RP (2010) Phylogenetic comparative approaches for studying niche conservatism. J Evol Biol 23(12):2529–2539

    Article  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65(2):213–224

    Article  Google Scholar 

  • Elton C (1946) Competition and the structure of ecological communities. J Anim Ecol 15(1):54–68

    Article  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23(11):619–630

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol 24(4):1042–1051

    Article  Google Scholar 

  • Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11(12):1265–1277

    Article  Google Scholar 

  • Haegeman B, Loreau M (2008) Limitations of entropy maximization in ecology. Oikos 117:1700–1710

    Article  Google Scholar 

  • Heard SB, Cox GH (2007) The shapes of phylogenetic trees of clades, faunas, and local assemblages: exploring spatial pattern in differential diversification. Am Nat 169(5):E107–E118

    Article  Google Scholar 

  • Helmus MR et al (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83

    Article  Google Scholar 

  • Ho LST, Ane C (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol 63:397–408

    Google Scholar 

  • Isaac NJB et al (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2(3):e296

    Article  Google Scholar 

  • Ives AR, Helmus MR (2010) Phylogenetic metrics of community similarity. Am Nat 176(5):E128–E142

    Article  Google Scholar 

  • Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecol Monogr 81(3):511–525

    Article  Google Scholar 

  • Izsak C, Price ARG (2001) Measuring β-diversity using a taxonomic similarity index, and its relation to spatial scale. Mar Ecol Prog Ser 215:69–77

    Article  Google Scholar 

  • Izsáki J, Papp L (1995) Application of the quadratic entropy indices for diversity studies of drosophilid assemblages. Environ Ecol Stat 2(3):213–224

    Article  Google Scholar 

  • Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull de la Soc Vaudoise des Sci Nat 37:547–579

    Google Scholar 

  • Järvinen O (1982) Species-to-genus ratios in biogeography: a historical note. J Biogeogr 9(4):363–370

    Article  Google Scholar 

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12(9):949–960

    Article  Google Scholar 

  • Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87(7):S86–S99

    Article  Google Scholar 

  • Kraft NJB et al (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170(2):271–283

    Article  Google Scholar 

  • Leibold MA, Economo EP, Peres-Neto P (2010) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13(10):1290–1299

    Article  Google Scholar 

  • Locey KJ, White EP (2013) How species richness and total abundance constrain the distribution of abundance. Ecol Lett 16(9):1177–1185

    Article  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  CAS  Google Scholar 

  • Mace GM, Gittleman JL, Purvis A (2003) Preserving the tree of life. Science 300(5626):1707–1709

    Article  CAS  Google Scholar 

  • Magurran AE (2004). Measuring biological diversity. Oxford University Press, Oxford

    Google Scholar 

  • May RM (1990) Taxonomy as destiny. Nature 347:129–130

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13(9):1085–1093

    Article  Google Scholar 

  • Mooers AØ, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Q Rev Biol 72(1):31–54

    Article  Google Scholar 

  • Mouquet N et al (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87(4):769–785

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884

    Article  CAS  Google Scholar 

  • Parra JL, McGuire JA, Graham CH (2010) Incorporating clade identity in analyses of phylogenetic community structure: an example with hummingbirds. Am Nat 176(5):573–587

    Article  Google Scholar 

  • Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86(4):792–812

    Article  CAS  Google Scholar 

  • Pavoine S, Ollier S, Dufour A-B (2005) Is the originality of a species measurable? Ecol Lett 8(6):579–586

    Article  Google Scholar 

  • Pearse WD, Jones A, Purvis A (2013) Barro Colorado Island’s phylogenetic assemblage structure across fine spatial scales and among clades of different ages. Ecology 94(12):2861–2872

    Article  Google Scholar 

  • Peres-Neto PR, Leibold MA, Dray S (2012) Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 93:S14–S30

    Article  Google Scholar 

  • Pillar VD, Duarte LS (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol Lett 13(5):587–596

    Article  Google Scholar 

  • Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Roy Soc B Biol Sci 267(1459):2267–2272

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Redding DW, Mooers AØ (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20(6):1670–1678

    Article  Google Scholar 

  • Silvertown J et al (2006) Phylogeny and the hierarchical organization of plant diversity. Ecology 87(7):S39–S166

    Article  Google Scholar 

  • Srivastava DS et al (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15(7):637–648

    Article  Google Scholar 

  • Swenson NG (2013) The assembly of tropical tree communities—the advances and shortcomings of phylogenetic and functional trait analyses. Ecography 36(3):264–276

    Article  Google Scholar 

  • Swenson NG et al (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87(10):2418–2424

    Article  Google Scholar 

  • Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10(11):1029–1036

    Article  Google Scholar 

  • Vamosi S et al (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18(4):572–592

    Article  CAS  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—systematics and the agony of choice. Biol Conserv 55(3):235–254

    Article  Google Scholar 

  • Vellend M et al. (2011) “Measuring phylogenetic biodiversity”. In: Magurran AE, McGill BJ Biological Diversity, Oxford University Press, Oxford Chap. 14

    Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129(1):301–305

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156(2):145–155

    Article  Google Scholar 

  • Webb CO et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33(1):475–505

    Article  Google Scholar 

  • Westoby M, Leishman MR, Lord JM (1995) On misinterpreting the ‘phylogenetic correction’. J Ecol 83(3):531–534

    Article  Google Scholar 

  • Wiens JJ et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13(10):1310–1324

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank László Zsolt Garamszegi for inviting us to contribute this chapter, and three anonymous reviewers for their valuable suggestions and feedback. Marc Cadotte and Gustavo Carvalho shared code for calculating metrics, and A. David and L. McInnes provided useful feedback on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Pearse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearse, W.D., Purvis, A., Cavender-Bares, J., Helmus, M.R. (2014). Metrics and Models of Community Phylogenetics. In: Garamszegi, L. (eds) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43550-2_19

Download citation

Publish with us

Policies and ethics