Monotone Measures-Based Integrals


The theory of classical measures and integral reflects the genuine property of several quantities in standard physics and/or geometry, namely the σ-additivity. Though monotone measure not assuming σ-additivity appeared naturally in models extending the classical ones (for example, inner and outer measures, where the related integral was considered by Vitali already in 1925), their intensive research was initiated in the past 40 years by the computer science applications in areas reflecting human decisions, such as economy, psychology, multicriteria decision support, etc. In this chapter, we summarize basic types of monotone measures together with the basic monotone measures-based integrals, including the Choquet and Sugeno integrals, and we introduce the concept of universal integrals proposed by Klement etal to give a common roof for all mentioned integrals. Benvenuti’s integrals linked to semicopulas are shown to be a special class of universal integrals. Up to several other integrals, we also introduce decomposition integrals due to Even and Lehrer, and show which decomposition integrals are inside the framework of universal integrals.


Probability Measure Measurable Space Fuzzy Measure Outer Measure Basic Probability Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

cummulative prospect theory


  1. [5.1]
    R.C. Archibald: Mathematics before the Greeks, Science 71(1831), 109–121 (1930)CrossRefMATHGoogle Scholar
  2. [5.2]
    D. Smith: History of Mathematics (Dover Publications, New York 1958)Google Scholar
  3. [5.3]
    J. Kepler: Nova Stereometria Doliorum Vinariorum (Linz 1615) Google Scholar
  4. [5.4]
    G.W. Leibniz: Nova methodus pro maximis et minimis (New method for maximums and minimums; 1684). In: A Source Book in Mathematics, ed. by D.J. Struik (Harvard Univ. Press, Cambridge 1969) p. 271Google Scholar
  5. [5.5]
    I. Newton: Principia (1687) (S. Chandrasekhar: Newtons Principia for the Common Reader, Oxford Univ. Press, Oxford, 1995) Google Scholar
  6. [5.6]
    G.F.B. Riemann: On the Hypotheses Which Underlie Geometry, Habilitation Thesis (Universität Göttingen, Göttingen 1854), published first in Proc. R. Philos. Soc. Göttingen 13, 87-132 (1854) in GermanGoogle Scholar
  7. [5.7]
    S.B. Chae: Lebesgue Integration (Marcel Dekker, Inc., New York 1980)MATHGoogle Scholar
  8. [5.8]
    G. Vitali: Sulla definizione di integrale delle funzioni di una variabile, Ann. Mat. Pura Appl. IV 2, 111–121 (1925)MathSciNetCrossRefMATHGoogle Scholar
  9. [5.9]
    G. Choquet: Theory of capacities, Ann. Inst. Fourier (Grenoble) 5, 131–292 (1953)MathSciNetCrossRefMATHGoogle Scholar
  10. [5.10]
    L.A. Zadeh: Fuzzy sets, Inform. Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  11. [5.11]
    M. Sugeno: Theory of Fuzzy Integrals and Applications, Ph.D. Thesis (Tokyo Inst. of Technology, Tokyo 1974)Google Scholar
  12. [5.12]
    M. Sugeno, T. Murofushi: Pseudo–additive measures and integrals, J. Math. Anal. Appl. 122, 197–222 (1987)MathSciNetCrossRefMATHGoogle Scholar
  13. [5.13]
    E. Pap: Integral generated by decomposable measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)MathSciNetMATHGoogle Scholar
  14. [5.14]
    S. Weber: $\bot$–decomposable measures and integrals for Archimedean t–conorms $\bot$, J. Math. Anal. Appl. 101, 114–138 (1984)MathSciNetCrossRefMATHGoogle Scholar
  15. [5.15]
    L.A. Zadeh: Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefMATHGoogle Scholar
  16. [5.16]
    D. Dubois, H. Prade: Fuzzy Sets and Systems, Theory and Applications (Academic, New York 1980)MATHGoogle Scholar
  17. [5.17]
    M. Grabisch, T. Murofushi, M. Sugeno (Eds.): Fuzzy Measures and Integrals, Theory and Applications (Physica, Heidelberg 2000)MATHGoogle Scholar
  18. [5.18]
    E. Pap: Null–Additive Set Functions (Kluwer, Dordrecht 1995)MATHGoogle Scholar
  19. [5.19]
    Z. Wang, G.J. Klir: Generalized Measure Theory (Springer, New York 2009)CrossRefMATHGoogle Scholar
  20. [5.20]
    E. Pap (Ed.): Handbook of Measure Theory (Elsevier, Amsterdam 2002)MATHGoogle Scholar
  21. [5.21]
    D. Schmeidler: Integral Representation without additivity, Proc. Am. Math. Soc. 97(2), 255–261 (1986)MathSciNetCrossRefMATHGoogle Scholar
  22. [5.22]
    D. Schmeidler: Subjective probability and expected utility without additivity, Econometrica 57, 571–587 (1989)MathSciNetCrossRefMATHGoogle Scholar
  23. [5.23]
    J. Šipoš: Integral with respect to a pre-measure, Math. Slov. 29, 141–155 (1979)MathSciNetMATHGoogle Scholar
  24. [5.24]
    P. Benvenuti, R. Mesiar, D. Vivona: Monotone set functions-based integrals. In: Handbook of Measure Theory, ed. by E. Pap (Elsevier, Amsterdam 2002) pp. 1329–1379CrossRefGoogle Scholar
  25. [5.25]
    M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap: Aggregation Functions, Encyclopedia of Mathematics and Its Applications, Vol. 127 (Cambridge Univ. Press, Cambridge 2009)CrossRefMATHGoogle Scholar
  26. [5.26]
    D. Denneberg: Non–Additive Measure and Integral (Kluwer, Dordrecht 1994)CrossRefMATHGoogle Scholar
  27. [5.27]
    A. Chateauneuf, J.-Y. Jaffray: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Math. Soc. Sci. 17, 263–283 (1989)MathSciNetCrossRefMATHGoogle Scholar
  28. [5.28]
    A.P. Dempster: Upper and lower probabilities induced by a multi-valued mapping, Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  29. [5.29]
    G. Shafer: A Mathematical Theory of Evidence (Princeton Univ. Press, Princeton, NJ 1976)MATHGoogle Scholar
  30. [5.30]
    R.R. Yager, L. Liu: Classic works of the Dempster–Shafer theory of belief functions. In: Studies in Fuzziness and Soft Computing, ed. by R.R. Yager, L. Liu (Springer, Berlin 2008)Google Scholar
  31. [5.31]
    R. Mesiar, J. Li, E. Pap: The Choquet integral as Lebesgue integral and related inequalities, Kybernetika 46(6), 1098–1107 (2010)MathSciNetMATHGoogle Scholar
  32. [5.32]
    R. Mesiar: k-order additive fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(6), 561–568 (1999)MathSciNetCrossRefMATHGoogle Scholar
  33. [5.33]
    M. Sugeno: Fuzzy measure and fuzzy integral, Trans. Soc. Instrum. Control Eng. 8, 95–102 (1972)Google Scholar
  34. [5.34]
    R. Mesiar: k-order Pan-discrete fuzzy measures, Proc. IFSA'97 1, 488–490 (1997)Google Scholar
  35. [5.35]
    J.L. Marichal: An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework, IEEE Trans. Fuzzy Syst. 9(1), 164–172 (2001)MathSciNetCrossRefGoogle Scholar
  36. [5.36]
    S. Ovchinnikov, A. Dukhovny: Integral representation of invariant functionals, J. Math. Anal. Appl. 244, 228–232 (2000)MathSciNetCrossRefMATHGoogle Scholar
  37. [5.37]
    P.S. Mostert, A.L. Shield: On the structure of semigroups on a compact manifold with boundary, Ann. Math. 65, 117–143 (1957)MathSciNetCrossRefGoogle Scholar
  38. [5.38]
    N. Shilkret: Maxitive measures and integration, Indag. Math. 33, 109–116 (1971)MathSciNetCrossRefMATHGoogle Scholar
  39. [5.39]
    W. Sander, J. Siedekum: Multiplication, distributivity and fuzzy-integral II & III, Kybernetika 41(4), 497–518 (2005)MathSciNetMATHGoogle Scholar
  40. [5.40]
    T. Murofushi, M. Sugeno: Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral, Fuzzy Sets Syst. 42, 51–57 (1991)MathSciNetCrossRefMATHGoogle Scholar
  41. [5.41]
    R. Mesiar: Choquet–like integrals, J. Math. Anal. Appl. 194, 477–488 (1995)MathSciNetCrossRefMATHGoogle Scholar
  42. [5.42]
    E. Pap: Pseudo-convolution and its applications. In: Fuzzy Measures and Integrals, Theory and Applications, ed. by M. Grabisch, T. Murofushi, M. Sugeno (Physica, Heidelberg 2000) pp. 171–204Google Scholar
  43. [5.43]
    W. Sander, J. Siedekum: Multiplication, distributivity and fuzzy-integral I, Kybernetika 41(3), 397–422 (2005)MathSciNetMATHGoogle Scholar
  44. [5.44]
    E.P. Klement, R. Mesiar, E. Pap: A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)CrossRefGoogle Scholar
  45. [5.45]
    S. Weber: Two integrals and some modified version – critical remarks, Fuzzy Sets Syst. 20, 97–105 (1986)CrossRefMATHGoogle Scholar
  46. [5.46]
    R.B. Nelsen: An Introduction to Copulas, Lecture Notes in Statistics, Vol. 139, 2nd edn. (Springer, New York 2006)MATHGoogle Scholar
  47. [5.47]
    H. Imaoka: Comparison between three fuzzy integrals. In: Fuzzy Measures and Integrals, Theory and Applications, ed. by M. Grabisch, T. Murofushi, M. Sugeno (Physica, Heidelberg 2000) pp. 273–286Google Scholar
  48. [5.48]
    E.P. Klement, R. Mesiar, E. Pap: Measure-based aggregation operators, Fuzzy Sets Syst. 142(1), 3–14 (2004)MathSciNetCrossRefMATHGoogle Scholar
  49. [5.49]
    H. Imaoka: On a subjective evaluation model by a generalized fuzzy integral, Int. J. Uncertain. Fuzziness Knowl.–Based Syst. 5, 517–529 (1997)MathSciNetCrossRefMATHGoogle Scholar
  50. [5.50]
    Q. Yang: The pan-integral on fuzzy measure space, Fuzzy Math. 3, 107–114 (1985), in ChineseMathSciNetMATHGoogle Scholar
  51. [5.51]
    Z. Wang, G.J. Klir: Fuzzy Measure Theory (Plenum, New York 1992)CrossRefMATHGoogle Scholar
  52. [5.52]
    R. Mesiar, J. Rybárik: Pan-operations structure, Fuzzy Sets Syst. 74, 365–369 (1995)MathSciNetCrossRefMATHGoogle Scholar
  53. [5.53]
    Q. Zhang, R. Mesiar, J. Li, P. Struk: Generalized Lebesgue integral, Int. J. Approx. Reason. 52(3), 427–443 (2011)MathSciNetCrossRefMATHGoogle Scholar
  54. [5.54]
    E. Lehrer: A new integral for capacities, Econ. Theory 39, 157–176 (2009)MathSciNetCrossRefMATHGoogle Scholar
  55. [5.55]
    E. Lehrer, R. Teper: The concave integral over large spaces, Fuzzy Sets Syst. 159, 2130–2144 (2008)MathSciNetCrossRefMATHGoogle Scholar
  56. [5.56]
    Y. Even, E. Lehrer: Decomposition-integral: unifying Choquet and the concave integrals, Econ. Theory 56, 33–58 (2014)MathSciNetCrossRefMATHGoogle Scholar
  57. [5.57]
    R. Mesiar, A. Stupňanová: Decomposition integrals, Int. J. Approx. Reason. 54(8), 1252–1259 (2013)MathSciNetCrossRefMATHGoogle Scholar
  58. [5.58]
    A. Stupňanová: Decomposition integrals, Comm. Comput. Info. Sci. 300, 542–548 (2012)CrossRefMATHGoogle Scholar
  59. [5.59]
    A. Mesiarová-Zemánková, R. Mesiar, K. Ahmad: The balancing Choquet integral, Fuzzy Sets Syst. 161(7), 2243–2255 (2010)MathSciNetCrossRefMATHGoogle Scholar
  60. [5.60]
    R. Mesiar, A. Mesiarová-Zemánková, K. Ahmad: Discrete Choquet integral and some of its symmetric extensions, Fuzzy Sets Syst. 184(1), 148–155 (2011)MathSciNetCrossRefMATHGoogle Scholar
  61. [5.61]
    A. Tversky, D. Kahneman: Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain. 5, 297–323 (1992)CrossRefMATHGoogle Scholar
  62. [5.62]
    A. Tversky, D. Kahneman: Rational choice and the framing of decisions, J. Bus. 59(278), 251–278 (1986)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dep. Mathematics and Descriptive GeometrySTU in BratislavaBratislavaSlovakia
  2. 2.Dep. Knowledge-Based Mathematical SystemsJohannes Kepler UniversityLinzAustria

Personalised recommendations