Skip to main content

Evolving Connectionist Systems: From Neuro-Fuzzy-, to Spiking- and Neuro-Genetic

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter follows the development of a class of neural networks (GlossaryTerm

NN

) called evolving connectionist systems (GlossaryTerm

ECOS

). The term evolving is used here in its meaning of unfolding, developing, changing, revealing (according to the Oxford dictionary) rather than evolutionary. The latter represents processes related to populations and generations of them. An GlossaryTerm

ECOS

is a neural network-based model that evolves its structure and functionality through incremental, adaptive learning and self-organization during its lifetime. In principle, it could be a simple GlossaryTerm

NN

or a hybrid connectionist system. The latter is a system based on neural networks that also integrate other computational principles, such as linguistically meaningful explanation features of fuzzy rules, optimization techniques for structure and parameter optimization, quantum-inspired methods, and gene regulatory networks. The chapter includes definitions and examples of GlossaryTerm

ECOS

such as: evolving neuro-fuzzy and hybrid systems; evolving spiking neural networks, neurogenetic systems, quantum-inspired systems, which are all discussed from the point of view of the structural and functional development of a connectionist-based model and the knowledge that it represents. Applications for knowledge engineering across domain areas, such as in bioinformatics, brain study, and intelligent machines are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CI:

computational intelligence

CNGM:

computational neuro-genetic modeling

DENFIS:

dynamic neuro-fuzzy inference system

deSNN:

dynamic eSNN

ECOS:

evolving connectionist system

EEG:

electroencephalogram

EFuNN:

evolving fuzzy neural network

eSNN:

evolving spiking neural network

ESOM:

evolving self-organized map

ETS:

evolving Takagi–Sugeno system

fMRI:

functional magneto-resonance imaging

FNN:

fuzzy neural network

GRN:

gene regulatory network

gene/protein regulatory network

LIFM:

leaky integrate-and-fire

NFI:

neuro-fuzzy inference system

NN:

neural network

QeSNN:

quantum-inspired eSNN

RBF:

radial basis function

SOM:

self-organizing map

SPAN:

spike pattern association neuron

SRM:

spike response model

STDP:

spike-timing dependent plasticity

T1:

type-1

T2:

type-2

TWNFI:

transductive weighted neuro-fuzzy inference system

WWKNN:

weighted-weighted nearest neighbor

References

  1. N. Kasabov: Evolving fuzzy neural networks – Algorithms, applications and biological motivation. In: Methodologies for the Conception, Design Application of Soft Computing, ed. by T. Yamakawa, G. Matsumoto (World Scientific, Singapore 1998) pp. 271–274

    Google Scholar 

  2. N. Kasabov: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering (MIT, Cambridge 1996) p. 550

    MATH  Google Scholar 

  3. N. Kasabov, S. Shishkov: A connectionist production system with partial match and its use for approximate reasoning, Connect. Sci. 5(3/4), 275–305 (1993)

    Article  Google Scholar 

  4. N. Kasabov: Hybrid connectionist production system, J. Syst. Eng. 3(1), 15–21 (1993)

    Google Scholar 

  5. L.A. Zadeh: Fuzzy sets, Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.A. Zadeh: Fuzzy logic, IEEE Computer 21, 83–93 (1988)

    Article  Google Scholar 

  7. L.A. Zadeh: A theory of approximate reasoning. In: Machine Intelligence, Vol. 9, ed. by J.E. Hayes, D. Michie, L.J. Mikulich (Ellis Horwood, Chichester 1979) pp. 149–194

    Google Scholar 

  8. N. Kasabov: Incorporating neural networks into production systems and a practical approach towards realisation of fuzzy expert systems, Comput. Sci. Inf. 21(2), 26–34 (1991)

    Google Scholar 

  9. N. Kasabov: Hybrid connectionist fuzzy production systems – Towards building comprehensive AI, Intell. Autom. Soft Comput. 1(4), 351–360 (1995)

    Article  Google Scholar 

  10. N. Kasabov: Connectionist fuzzy production systems, Lect. Notes Artif. Intell. 847, 114–128 (1994)

    Google Scholar 

  11. N. Kasabov: Hybrid connectionist fuzzy systems for speech recognition and the use of connectionist production systems, Lect. Notes Artif. Intell. 1011, 19–33 (1995)

    Google Scholar 

  12. T. Yamakawa, E. Uchino, T. Miki, H. Kusanagi: A neo fuzzy neuron and its application to system identification and prediction of the system behaviour, Proc. 2nd Int. Conf. Fuzzy Log. Neural Netw. (Iizuka, Japan 1992) pp. 477–483

    Google Scholar 

  13. T. Yamakawa, S. Tomoda: A fuzzy neuron and its application to pattern recognition, Proc. 3rd IFSA Congr., ed. by J. Bezdek (Seattle, Washington 1989) pp. 1–9

    Google Scholar 

  14. T. Furuhashi, T. Hasegawa, S. Horikawa, Y. Uchikawa: An adaptive fuzzy controller using fuzzy neural networks, Proc. 5th IFSA World Congr. Seoul (1993) pp. 769–772

    Google Scholar 

  15. N. Kasabov, J.S. Kim, M. Watts, A. Gray: FuNN/2 – A fuzzy neural network architecture for adaptive learning and knowledge acquisition, Inf. Sci. 101(3/4), 155–175 (1997)

    Article  Google Scholar 

  16. N. Kasabov: Evolving fuzzy neural networks for supervised/unsupervised online knowledge–based learning, IEEE Trans. Syst. Man Cybern. B 31(6), 902–918 (2001)

    Article  Google Scholar 

  17. D. Deng, N. Kasabov: On-line pattern analysis by evolving self-organising maps, Neurocomputing 51, 87–103 (2003)

    Article  Google Scholar 

  18. N. Kasabov: Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines, Perpective in Neural Computing (Springer, Berlin, Heidelberg 2003)

    Book  MATH  Google Scholar 

  19. M. Watts: A decade of Kasabov's evolving connectionist systems: A review, IEEE Trans. Syst. Man Cybern. C 39(3), 253–269 (2009)

    Article  Google Scholar 

  20. N. Kohonen: Self-Organizing Maps, 2nd edn. (Springer, Berlin, Heidelberg 1997)

    Book  MATH  Google Scholar 

  21. F. Girosi: Regularization theory, radial basis functions and networks. In: From Statistics to Neural Networks, ed. by V. Cherkassky, J.H. Friedman, H. Wechsler (Springer, Heidelberg 1994) pp. 166–187

    Chapter  Google Scholar 

  22. G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analogue multidimensional maps, IEEE Trans. Neural Netw. 3(5), 698–713 (1991)

    Article  Google Scholar 

  23. B. Fritzke: A growing neural gas network learns topologies, Adv. Neural Inf. Process. Syst. 7, 625–632 (1995)

    Google Scholar 

  24. J. Platt: A resource allocating network for function interpolation, Neural Comput. 3, 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  25. N. Kasabov, Q. Song: DENFIS: Dynamic, evolving neural-fuzzy inference Systems and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  26. N. Kasabov: Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, Berlin, Heidelberg 2007)

    MATH  Google Scholar 

  27. J. Bezdek: A review of probabilistic, fuzzy, and neural models for pattern recognition, J. Intell. Fuzzy Syst. 1, 1–25 (1993)

    Article  Google Scholar 

  28. J. Bezdek (Ed.): Analysis of Fuzzy Information (CRC, Boca Raton 1987)

    MATH  Google Scholar 

  29. J. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum, New York 1981)

    Book  MATH  Google Scholar 

  30. R.R. Yager, D. Filev: Generation of fuzzy rules by mountain clustering, J. Intell. Fuzzy Syst. 2, 209–219 (1994)

    Google Scholar 

  31. Q. Song, N. Kasabov: NFI: A neuro-fuzzy inference method for transductive reasoning, IEEE Trans. Fuzzy Syst. 13(6), 799–808 (2005)

    Article  Google Scholar 

  32. Q. Song, N. Kasabov: TWNFI – A transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling, Neural Netw. 19(10), 1591–1596 (2006)

    Article  MATH  Google Scholar 

  33. N. Kasabov, Y. Hu: Integrated optimisation method for personalised modelling and case studies for medical decision support, Int. J. Funct. Inf. Pers. Med. 3(3), 236–256 (2010)

    Google Scholar 

  34. N. Kasabov: Global, local and personalised modelling and profile discovery in bioinformatics: An integrated approach, Pattern Recognit. Lett. 28(6), 673–685 (2007)

    Article  Google Scholar 

  35. S. Ozawa, S. Pang, N. Kasabov: On-line feature selection for adaptive evolving connectionist systems, Int. J. Innov. Comput. Inf. Control 2(1), 181–192 (2006)

    Google Scholar 

  36. S. Ozawa, S. Pang, N. Kasabov: Incremental learning of feature space and classifier for online pattern recognition, Int. J. Knowl. Intell. Eng. Syst. 10, 57–65 (2006)

    Google Scholar 

  37. M. Watts: Evolving Connectionist Systems: Characterisation, Simplification, Formalisation, Explanation and Optimisation, Ph.D. Thesis (University of Otago, Dunedin 2004)

    Google Scholar 

  38. N.L. Mineu, A.J. da Silva, T.B. Ludermir: Evolving neural networks using differential evolution with neighborhood-based mutation and simple subpopulation scheme, Proc. Braz. Symp. Neural Netw. SBRN (2012) pp. 190–195

    Google Scholar 

  39. P. Angelov: Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems (Springer, Berlin, Heidelberg 2002)

    Book  MATH  Google Scholar 

  40. N. Kasabov: Adaptive modelling and discovery in bioinformatics: The evolving connectionist approach, Int. J. Intell. Syst. 23, 545–555 (2008)

    Article  Google Scholar 

  41. L. Benuskova, N. Kasabov: Computational Neuro-Genetic Modelling (Springer, Berlin, Heidelberg 2007)

    Book  Google Scholar 

  42. L. Huang, Q. Song, N. Kasabov: Evolving connectionist system based role allocation for robotic soccer, Int. J. Adv. Robot. Syst. 5(1), 59–62 (2008)

    Google Scholar 

  43. N. Kasabov: Adaptation and interaction in dynamical systems: Modelling and rule discovery through evolving connectionist systems, Appl. Soft Comput. 6(3), 307–322 (2006)

    Article  Google Scholar 

  44. S. Schliebs, M. Defoin-Platel, S.P. Worner, N. Kasabov: Integrated feature and parameter optimization for evolving spiking neural networks: Exploring heterogeneous probabilistic models, Neural Netw. 22, 623–632 (2009)

    Article  Google Scholar 

  45. N. Kasabov, E. Postma, J. van den Herik: AVIS: A connectionist-based framework for integrated auditory and visual information processing, Inf. Sci. 123, 127–148 (2000)

    Article  MATH  Google Scholar 

  46. S. Pang, T. Ban, Y. Kadobayashi, K. Kasabov: LDA merging and splitting with applications to multiagent cooperative learning and system alteration, IEEE Trans. Syst. Man Cybern. B 42(2), 552–564 (2012)

    Article  Google Scholar 

  47. H. Widiputra, R. Pears, N. Kasabov: Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends, Lect. Notes Artif. Intell. 6635, 161–172 (2011)

    Google Scholar 

  48. D. Hebb: The Organization of Behavior (Wiley, New York 1949)

    Google Scholar 

  49. A.L. Hodgkin, A.F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  50. J. Hopfield: Pattern recognition computation using action potential timing for stimulus representation, Nature 376, 33–36 (1995)

    Article  Google Scholar 

  51. W. Maass: Computing with spiking neurons. In: Pulsed Neural Networks, ed. by W. Maass, C.M. Bishop (MIT, Cambridge 1998) pp. 55–81

    Google Scholar 

  52. W. Gerstner: Time structure of the activity of neural network models, Phys. Rev. E 51, 738–758 (1995)

    Article  Google Scholar 

  53. E.M. Izhikevich: Which model to use for cortical spiking neurons?, IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  54. S. Thorpe, A. Delorme, R. van Ruller: Spike-based strategies for rapid processing, Neural Netw. 14(6/7), 715–725 (2001)

    Article  Google Scholar 

  55. N. Kasabov: To spike or not to spike: A probabilistic spiking neuron model, Neural Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  56. S. Wysoski, L. Benuskova, N. Kasabov: Evolving spiking neural networks for audiovisual information processing, Neural Netw. 23(7), 819–836 (2010)

    Article  Google Scholar 

  57. D. Verstraeten, B. Schrauwen, M. d'Haene, D. Stroobandt: An experimental unification of reservoir computing methods, Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  58. S. Song, K. Miller, L. Abbott: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity, Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  59. S. Soltic, N. Kasabov: Knowledge extraction from evolving spiking neural networks with rank order population coding, Int. J. Neural Syst. 20(6), 437–445 (2010)

    Article  Google Scholar 

  60. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition, Neural Netw. 41, 188–201 (2013)

    Article  Google Scholar 

  61. A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov: SPAN: Spike pattern association neuron for learning spatio-temporal spike patterns, Int. J. Neural Syst. 22(4), 1250012 (2012)

    Article  Google Scholar 

  62. N. Nuntalid, K. Dhoble, N. Kasabov: EEG classification with BSA spike encoding algorithm and evolving probabilistic spiking neural network, Lect. Notes Comput. Sci. 7062, 451–460 (2011)

    Article  Google Scholar 

  63. G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen: Neuromorphic silicon neuron circuits, Front. Neurosci. 5, 5 (2011)

    Google Scholar 

  64. G. Indiveri, E. Chicca, R.J. Douglas: Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition, Cogn. Comput. 1(2), 119–127 (2009)

    Article  Google Scholar 

  65. S. Schliebs, N. Kasabov: Evolving spiking neural networks – a survey, Evol. Syst. 4(2), 87–98 (2013)

    Article  Google Scholar 

  66. N. Kasabov, L. Benuskova, S. Wysoski: A computational neurogenetic model of a spiking neuron, Neural Netw. IJCNN'05. Proc. (2005) pp. 446–451

    Google Scholar 

  67. N. Kasabov: NeuCube EvoSpike architecture for spatio-temporal modelling and pattern recognition of brain signals, Lect. Notes Comput. Sci. 7477, 225–243 (2012)

    Article  Google Scholar 

  68. M. Defoin-Platel, S. Schliebs, N. Kasabov: Quantum-inspired evolutionary algorithm: A multi-model EDA, IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  69. H. Nuzly, A. Hamed, S.M. Shamsuddin: Probabilistic evolving spiking neural network optimization using dynamic quantum inspired particle swarm optimization, Aust. J. Intell. Inf. Process. Syst. 11(1), 5–15 (2010)

    Google Scholar 

  70. N. Kasabov, R. Schliebs, H. Kojima: Probabilistic computational neurogenetic framework: From modelling cognitive systems to Alzheimer's disease, IEEE Trans. Auton. Ment. Dev. 3(4), 300–311 (2011)

    Article  Google Scholar 

  71. N. Kasabov (Ed.): Springer Handbook of Bio/Neuroinformatics (Springer, Berlin, Heidelberg 2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Kasabov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasabov, N. (2015). Evolving Connectionist Systems: From Neuro-Fuzzy-, to Spiking- and Neuro-Genetic. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics