Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Neuroengineering of sensorimotor rhythm-based brain–computer interface (GlossaryTerm

BCI

) systems is the process of using engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties of neural systems, engaged in the representation, planning, and execution of volitional movements, for the restoration and augmentation of human function via direct interactions between the nervous system and devices.

This chapter reviews information that is fundamental for the complete and comprehensive understanding of this complex interdisciplinary research field, namely an overview of the motor system, an overview of recent findings in neuroimaging and electrophysiology studies of the motor cortical anatomy and networks, and the engineering approaches used to analyze motor cortical signals and translate them into control signals that computer programs and devices can interpret.

Specifically, the anatomy and physiology of the human motor system, focusing on the brain areas and spinal elements involved in the generation of volitional movements is reviewed. The stage is then set for introducing human prototypical motion attributes, sensorimotor learning, and several computational models suggested to explain psychophysical motor phenomena based on the current knowledge in the field of neurophysiology.

An introduction to invasive and non-invasive neural recording techniques, including functional and structural magnetic resonance imaging (GlossaryTerm

fMRI

and GlossaryTerm

sMRI

), electrocorticography (GlossaryTerm

ECoG

), electroencephalography (GlossaryTerm

EEG

), intracortical single unit activity (GlossaryTerm

SU

) and multiple unit extracellular recordings, and magnetoencephalography (GlossaryTerm

MEG

) is integrated with coverage aimed at elucidating what is known about sensory motor oscillations and brain anatomy, which are used to generate control signals for brain actuated devices and alternative communication in GlossaryTerm

BCI

. Emphasis is on latest findings in these topics and on highlighting what information is accessible at each of the different scales and the levels of activity that are discernible or utilizable for the effective control of devices using intentional activation sensorimotor neurons and/or modulation of sensorimotor rhythms and oscillations.

The nature, advantages, and drawbacks of various approaches and their suggested functions as the neural correlates of various spatiotemporal motion attributes are reviewed. Sections dealing with signal analysis techniques, translation algorithms, and adaption to the brain’s non-stationary dynamics present the reader with a wide-ranging review of the mathematical and statistical techniques commonly used to extract and classify the bulk of neural information recorded by the various recording techniques and the challenges that are posed for deploying GlossaryTerm

BCI

systems for their intended uses, be it alternative communication and control, assistive technologies, neurorehabilitation, neurorestoration or replacement, or recreation and entertainment, among other applications. Lastly, a discussion is presented on the future of the field, highlighting newly emerging research directions and their potential ability to enhance our understanding of the human brain and specifically the human motor system and ultimately how that knowledge may lead to more advanced and intelligent computational systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

BCI:

brain–computer interface

BMI:

brain–machine interface

BP:

bereitschafts potential

CMA:

cingulate motor area

CNS:

central nervous system

CSM:

covariate shift minimization

CSP:

common spatial pattern

CST:

corticospinal tract

DOF:

degree of freedom

DSA:

data space adaptation

DTI:

diffusion tensor imaging

ECoG:

electrocorticography

EEG:

electroencephalography

EMG:

electromyography

ERD:

event-related desynchronization

ERS:

event-related synchronization

FA:

fractional anisotropy

fMRI:

functional magneto-resonance imaging

FNN:

fuzzy neural network

GA:

genetic algorithm

GM:

gray matter

HFB:

higher frequency band

ICA:

independent component analysis

IN:

interneuron

IPL:

inferior parietal lobe

ISI:

inter-spike interval

KL:

Kullback–Leibler

LDA:

linear discriminant analysis

LFB:

lower frequency band

LFP:

local field potential

LRP:

lateralized readiness potential

M1:

motor cortex

MEG:

magnetoencephalography

MMLD:

man–machine learning dilemma

MOT:

movement time

MRCP:

movement-related cortical potentials

MRI:

magnetic resonance imaging

MT:

medial temporal

NN:

neural network

NS:

negative slope

PCA:

principal component analysis

PCVM:

probabilistic classifier vector machine

PD:

Parkinson disease

PET:

positron emission tomography

PMI:

partial mutual information

PN:

pyramidal neuron

PSD:

power spectral density

PSO:

particle swarm optimization

PSTH:

peri-stimulus-time histogram

PTT:

pursuit-tracking task

PVS:

persistent vegetative state

RNN:

recurrent neural network

RP:

readiness potential

RT:

reaction time

SLF:

superior longitudinal fasciculus

SMA:

supplementary motor area

sMRI:

structural magnetic resonance imaging

SMR:

sensorimotor rhythm

SOFNN:

self-organizing fuzzy neural network

SRT:

serial reaction time

SU:

single unit

SVM:

support vector machine

TET:

total experiment time

TN:

thalamus

WM:

white matter

References

  1. D.M. Wolpert, Z. Ghahramani, J.R. Flanagan: Perspectives and problems in motor learning, Trends Cogn. Sci. 5, 487–494 (2001)

    Article  Google Scholar 

  2. Laboratory for Computational Motor Control, John Hopkins University, Baltimore, USA: http://www.shadmehrlab.org/Courses/medschoollectures.html

  3. R.E. Jung, R.J. Haier: The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence, Behav. Brain Sci. 30, 135–154 (2007)

    Article  Google Scholar 

  4. D.J. McFarland, J.R. Wolpaw: Sensorimotor rhythm-based brain-computer interface (BCI): Feature selection by regression improves performance, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 372–379 (2005)

    Article  Google Scholar 

  5. J.W. McDonald: Repairing the damaged spinal cord, Sci. Am. 281, 64–73 (1999)

    Article  Google Scholar 

  6. A.P. Georgopoulos, J. Ashe, N. Smyrnis, M. Taira: The motor cortex and the coding of force, Science 256, 1692–1695 (1992)

    Article  Google Scholar 

  7. M. Desmurget, D. Pélisson, Y. Rossetti, C. Prablanc: From eye to hand: Planning goal-directed movements, Neurosci. Biobehav. Rev. 22, 761–788 (1998)

    Article  Google Scholar 

  8. C. Ghez, J.W. Krakauer, R.L. Sainburg, M.-F. Ghilasdi: Spatial representations and internal models of limb dynamics in motor learning. In: The New Cognitive Neurosciences, ed. by M.S. Gazzaniga (MIT Press, Cambridge 2000) pp. 501–514

    Google Scholar 

  9. N. Hogan: The mechanics of multi-joint posture and movement control, Biol. Cybern. 52, 315–331 (1985)

    Article  MATH  Google Scholar 

  10. P. Vetter, D.M. Wolpert: Context estimation for sensorimotor control, J. Neurophysiol. 84, 1026–1034 (2000)

    Google Scholar 

  11. W.L. Nelson: Physical principles for economies of skilled movements, Biol. Cybern. 46, 135–147 (1983)

    Article  MATH  Google Scholar 

  12. T. Flash, N. Hogan: The coordination of arm movements: An experimentally confirmed mathematical model, J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  13. N. Hogan: An organizing principle for a class of voluntary movements, J. Neurosci. 4, 2745–2754 (1984)

    Google Scholar 

  14. R. Sosnik, T. Flash, B. Hauptmann, A. Karni: The acquisition and implementation of the smoothness maximization motion strategy is dependent on spatial accuracy demands, Exp. Brain Res. 176, 311–331 (2007)

    Article  Google Scholar 

  15. R. Sosnik, M. Shemesh, M. Abeles: The point of no return in planar hand movements: An indication of the existence of high level motion primitives, Cogn. Neurodynam. 1, 341–358 (2007)

    Article  Google Scholar 

  16. D.M. Wolpert, J. Diedrichsen, J.R. Flanagan: Principles of sensorimotor learning, Nat. Rev. Neurosci. 12, 739–751 (2011)

    Google Scholar 

  17. F.A. Mussa-Ivaldi, E. Bizzi: Motor learning through the combination of primitives, Philos. Trans. R. Soc. B 355, 1755–1769 (2000)

    Article  Google Scholar 

  18. E.A. Henis, T. Flash: Mechanisms underlying the generation of averaged modified trajectories, Biol. Cybern. 72, 407–419 (1995)

    Article  Google Scholar 

  19. A. Karni, G. Meyer, C. Rey-Hipolito, P. Jezzard, M.M. Adams, R. Turner, L.G. Ungerleider: The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex, Proc. Natl. Acad. Sci. USA 95, 861–868 (1998)

    Article  Google Scholar 

  20. O. Hikosaka, M.K. Rand, S. Miyachi, K. Miyashita: Learning of sequential movements in the monkey: Process of learning and retention of memory, J. Neurophysiol. 74, 1652–1661 (1995)

    Google Scholar 

  21. R. Colom, S. Karama, R.E. Jung, R.J. Haier: Human intelligence and brain networks, Dialogues Clin. Neurosci. 12, 489–501 (2010)

    Google Scholar 

  22. H. Johansen-Berg: The future of functionally-related structural change assessment, NeuroImage 62, 1293–1298 (2012)

    Article  Google Scholar 

  23. X. Li, D. Coyle, L. Maguire, D.R. Watson, T.M. McGinnity: Gray matter concentration and effective connectivity changes in Alzheimer's disease: A longitudinal structural MRI study, Neuroradiology 53, 733–748 (2011)

    Article  Google Scholar 

  24. C.J. Steele, J. Scholz, G. Douaud, H. Johansen-Berg, V.B. Penhune: Structural correlates of skilled performance on a motor sequence task, Front. Human Neurosci. 6, 289 (2012)

    Article  Google Scholar 

  25. R.D. Fields: Imaging learning: the search for a memory trace, Neuroscientist 17, 185–196 (2011)

    Article  Google Scholar 

  26. S.A. Huettel, A.W. Song, G. McCarthy: Functional Magnetic Resonance Imaging, 2nd edn. (Sinauer Associates, Sunderland 2009)

    Google Scholar 

  27. F. Ullén, L. Forsman, O. Blom, A. Karabanov, G. Madison: Intelligence and variability in a simple timing task share neural substrates in the prefrontal white matter, J. Neurosci. 28, 4238–4243 (2008)

    Article  Google Scholar 

  28. T. Ball, A. Schreiber, B. Feige, M. Wagner, C.H. Lücking, R. Kristeva-Feige: The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI, NeuroImage 10, 682–694 (1999)

    Article  Google Scholar 

  29. S. Halder, D. Agorastos, R. Veit, E.M. Hammer, S. Lee, B. Varkuti, M. Bogdan, W. Rosenstiel, N. Birbaumer, A. Kübler: Neural mechanisms of brain-computer interface control, NeuroImage 55, 1779–1790 (2011)

    Article  Google Scholar 

  30. F. Quandt, C. Reichert, H. Hinrichs, H.J. Heinze, R.T. Knight, J.W. Rieger: Single trial discrimination of individual finger movements on one hand: A combined MEG and EEG study, NeuroImage 59, 3316–3324 (2012)

    Article  Google Scholar 

  31. K.J. Miller, L.B. Sorensen, J.G. Ojemann, M. den Nijs: Power-law scaling in the brain surface electric potential, PLoS Comput. Biol. 5, e1000609 (2009)

    Article  MathSciNet  Google Scholar 

  32. K.J. Miller, G. Schalk, E.E. Fetz, M. den Nijs, J.G. Ojemann, R.P.N. Rao: Cortical activity during motor execution, motor imagery, and imagery-based online feedback, Proc. Natl Acad. Sci. USA 107, 4430–4435 (2010)

    Article  Google Scholar 

  33. K.J. Miller, D. Hermes, C.J. Honey, A.O. Hebb, N.F. Ramsey, R.T. Knight, J.G. Ojemann, E.E. Fetz: Human motor cortical activity is selectively phase-entrained on underlying rhythms, PLoS Comput. Biol. 8, e1002655 (2012)

    Article  Google Scholar 

  34. V.N. Murthy, E.E. Fetz: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys, J. Neurophysiol. 76, 3968–3982 (1996)

    Google Scholar 

  35. D.J. Krusienski, M. Grosse-Wentrup, F. Galán, D. Coyle, K.J. Miller, E. Forney, C.W. Anderson: Critical issues in state-of-the-art brain-computer interface signal processing, J. Neural Eng. 8, 025002 (2011)

    Article  Google Scholar 

  36. A.C. Papanicolaou, E.M. Castillo, R. Billingsley-Marshall, E. Pataraia, P.G. Simos: A review of clinical applications of magnetoencephalography, Int. Rev. Neurobiol. 68, 223–247 (2005)

    Article  Google Scholar 

  37. L. Kauhanen, T. Nykopp, J. Lehtonen, P. Jylänki, J. Heikkonen, P. Rantanen, H. Alaranta, M. Sams: EEG and MEG brain-computer interface for tetraplegic patients, IEEE Trans. Neural Syst. Rehabil. Eng. 14, 190–193 (2006)

    Article  Google Scholar 

  38. L. Kauhanen, T. Nykopp, M. Sams: Classification of single MEG trials related to left and right index finger movements, Clin. Neurophysiol. 117, 430–439 (2006)

    Article  Google Scholar 

  39. K.J. Miller, S. Zanos, E.E. Fetz, M. den Nijs, J.G. Ojemann: Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans, J. Neurosci. 29, 3132–3137 (2009)

    Article  Google Scholar 

  40. Z. Wang, Q. Ji, K.J. Miller, G. Schalk: Prior knowledge improves decoding of finger flexion from electrocorticographic signals, Front. Neurosci. 5, 127 (2011)

    Article  Google Scholar 

  41. G. Pfurtscheller, C. Neuper, C. Brunner, F. da Lopes Silva: Beta rebound after different types of motor imagery in man, Neurosci. Lett. 378, 156–159 (2005)

    Article  Google Scholar 

  42. G. Pfurtscheller, C. Brunner, A. Schlögl, F.H. da Lopes Silva: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks, NeuroImage 31, 153–159 (2006)

    Article  Google Scholar 

  43. G. Pfurtscheller, C. Neuper, A. Schlögl, K. Lugger: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters, IEEE Trans. Rehabil. Eng. 6, 316–325 (1998)

    Article  Google Scholar 

  44. D. Coyle, G. Prasad, T.M. McGinnity: A time-frequency approach to feature extraction for a brain-computer interface with a comparative analysis of performance measures, EURASIP J. Appl, Signal Process. 2005, 3141–3151 (2005)

    MATH  Google Scholar 

  45. G. Pfurtscheller, C. Guger, G. Müller, G. Krausz, C. Neuper: Brain oscillations control hand orthosis in a tetraplegic, Neurosci. Lett. 292, 211–214 (2000)

    Article  Google Scholar 

  46. M. Grosse-Wentrup, B. Schölkopf, J. Hill: Causal influence of gamma oscillations on the sensorimotor rhythm, NeuroImage 56, 837–842 (2011)

    Article  Google Scholar 

  47. H.H. Kornhuber, L. Deecke: Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale, Pflüg. Arch. 284, 1–17 (1965)

    Article  Google Scholar 

  48. L. Deecke, B. Grozinger, H.H. Kornhuber: Voluntary finger movement in man: Cerebral potentials and theory, Biol. Cybern. 23, 99–119 (1976)

    Article  Google Scholar 

  49. M. Krauledat, G. Dornhege, B. Blankertz, G. Curio, K.-R. Müller: The Berlin brain-computer interface for rapid response, Proc. 2nd Int. Brain-Comp. Interface Workshop Train. Course Biomed. Tech. (2004) pp. 61–62

    Google Scholar 

  50. M. Krauledat, G. Dornhege, B. Blankertz, G. Curio, F. Losch, K.-R. Müller: Improving speed and accuracy of brain-computer interfaces using readiness potential, Proc. 26th Int. IEEE Eng. Med. Biol. Conf. (2004) pp. 4512–4515

    Google Scholar 

  51. J.P.R. Dick, J.C. Rothwell, B.L. Day, R. Cantello, O. Buruma, M. Gioux, R. Benecke, A. Berardelli, P.D. Thompson, C.D. Marsden: The Bereitschaftspotential is abnormal in Parkinson's disease, Brain 112(1), 233–244 (1989)

    Article  Google Scholar 

  52. H. Shibasaki, M. Hallett: What is the Bereitschaftspotential?, Clin. Neurophysiol. 117, 2341–2356 (2006)

    Article  Google Scholar 

  53. Y. Gu, K. Dremstrup, D. Farina: Single-trial discrimination of type and speed of wrist movements from EEG recordings, Clin. Neurophysiol. 120, 1596–1600 (2009)

    Article  Google Scholar 

  54. D.J. McFarland, L.A. Miner, T.M. Vaughan, J.R. Wolpaw: Mu and beta rhythm topographies during motor imagery and actual movements, Brain Topogr. 12, 177–186 (2000)

    Article  Google Scholar 

  55. H. Lakany, B.A. Conway: Comparing EEG patterns of actual and imaginary wrist movements – A machine learning approach, Proc. 1st Int. Conf. Artif. Intell. Mach. Learn. AIML (2005) pp. 124–127

    Google Scholar 

  56. B. Nasseroleslami, H. Lakany, B.A. Conway: Identification of time-frequency EEG features modulated by force direction in arm isometric exertions, Proc. 5th Int. IEEE EMBS Conf. Neural Eng. (2011) pp. 422–425

    Google Scholar 

  57. J.R. Wolpaw, D.J. McFarland: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans, Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004)

    Article  Google Scholar 

  58. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw: Electroencephalographic (EEG) control of three-dimensional movement, J. Neural Eng. 7, 036007 (2010)

    Article  Google Scholar 

  59. T.J. Bradberry, R.J. Gentili, J.L. Contreras-Vidal: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals, J. Neurosci. 30, 3432–3437 (2010)

    Article  Google Scholar 

  60. E.D. Adrian, Y. Zotterman: The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ, J. Physiol. 61, 151–171 (1926)

    Article  Google Scholar 

  61. R.B. Stein, E.R. Gossen, K.E. Jones: Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci. 6, 389–397 (2005)

    Article  Google Scholar 

  62. D.A. Butts, C. Weng, J. Jin, C.-I. Yeh, N.A. Lesica, J.-M. Alonso, G.B. Stanley: Temporal precision in the neural code and the timescales of natural vision, Nature 449, 92–95 (2007)

    Article  Google Scholar 

  63. A.P. Georgopoulos, J.F. Kalaska, R. Caminiti, J.T. Massey: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex, J. Neurosci. 2, 1527–1537 (1982)

    Google Scholar 

  64. B. Amirikian, A.P. Georgopoulos, A.P. Georgopulos: Directional tuning profiles of motor cortical cells, Neurosci. Res. 36, 73–79 (2000)

    Article  Google Scholar 

  65. L. Paninski, M.R. Fellows, N.G. Hatsopoulos, J.P. Donoghue: Spatiotemporal tuning of motor cortical neurons for hand position and velocity, J. Neurophysiol. 91, 515–532 (2004)

    Article  Google Scholar 

  66. A.P. Georgopoulos, A.B. Schwartz, R.E. Kettner: Neuronal population coding of movement direction, Science 233, 1416–1419 (1986)

    Article  Google Scholar 

  67. H. Tanaka, T.J. Sejnowski, J.W. Krakauer: Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas, J. Neurophysiol. 102, 2921–2932 (2009)

    Article  Google Scholar 

  68. S.M. Chase, R.E. Kass, A.B. Schwartz: Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex, J. Neurophysiol. 108, 624–644 (2012)

    Article  Google Scholar 

  69. E.V. Evarts: Relation of pyramidal tract activity to force exerted during voluntary movement, J. Neurophysiol. 31, 14–27 (1968)

    Google Scholar 

  70. E. Schneidman, M.J. Berry, R. Segev, W. Bialek: Weak pairwise correlations imply strongly correlated network states in a neural population, Nature 440, 1007–1012 (2006)

    Article  Google Scholar 

  71. S.-I. Amari: Information geometry on hierarchy of probability distributions, IEEE Trans. Inform. Theor. 47, 1701–1711 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Wessberg, C.R. Stambaugh, J.D. Kralik, P.D. Beck, M. Laubach, J.K. Chapin, J. Kim, S.J. Biggs, M.A. Srinivasan, M.A. Nicolelis: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature 408, 361–365 (2000)

    Article  Google Scholar 

  73. M.D. Serruya, N.G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue: Instant neural control of a movement signal, Nature 416, 141–142 (2002)

    Article  MATH  Google Scholar 

  74. J.M. Carmena, M.A. Lebedev, R.E. Crist, J.E. O'Doherty, D.M. Santucci, D.F. Dimitrov, P.G. Patil, C.S. Henriquez, M.A.L. Nicolelis: Learning to control a brain-machine interface for reaching and grasping by primates, PLoS Biol. 1, E42 (2003)

    Article  Google Scholar 

  75. M.A. Lebedev, J.M. Carmena, J.E. O'Doherty, M. Zacksenhouse, C.S. Henriquez, J.C. Principe, M.A.L. Nicolelis: Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface, J. Neurosci. 25, 4681–4693 (2005)

    Article  Google Scholar 

  76. M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, A.B. Schwartz: Cortical control of a prosthetic arm for self-feeding, Nature 453, 1098–1101 (2008)

    Article  Google Scholar 

  77. D.M. Santucci, J.D. Kralik, M.A. Lebedev, M.A.L. Nicolelis: Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates, Eur. J. Neurosci. 22, 1529–1540 (2005)

    Article  Google Scholar 

  78. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan: Brain-computer interfaces for communication and control, Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  79. A. Bashashati, S.G. Mason, J.F. Borisoff, R.K. Ward, G.E. Birch: A comparative study on generating training-data for self-paced brain interfaces, IEEE Trans. Neural Syst. Rehabil. Eng. 15, 59–66 (2007)

    Article  Google Scholar 

  80. S.G. Mason, A. Bashashati, M. Fatourechi, K.F. Navarro, G.E. Birch: A comprehensive survey of brain interface technology designs, Ann. Biomed. Eng. 35(2), 137–169 (2007)

    Article  Google Scholar 

  81. N. Brodu, F. Lotte, A. Lécuyer: Comparative study of band-power extraction techniques for Motor Imagery classification, IEEE Symp. Comput. Intell. Cogn. Algorithm, Mind, Brain (2011) pp. 1–6

    Google Scholar 

  82. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi: A review of classification algorithms for EEG-based brain-computer interfaces, J. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  83. P. Herman, G. Prasad, T.M. McGinnity, D. Coyle: Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification, IEEE Trans. Neural Syst. Rehabil. Eng. 16, 317–326 (2008)

    Article  Google Scholar 

  84. J. Wolpaw, E.W. Wolpaw: Brain-Computer Interfaces: Principles and Practice (Oxford Univ. Press, Oxford 2012)

    Book  Google Scholar 

  85. S. Sun: Ensemble learning methods for classifying EEG sign, Lect. Notes Comput. Sci. 4472, 113–120 (2007)

    Article  Google Scholar 

  86. L.F. Nicolas-Alonso, J. Gomez-Gil: Brain computer interfaces – A review., Sensors 12, 1211–1279 (2012)

    Article  Google Scholar 

  87. A. Soria-Frisch: A critical review on the usage of ensembles for BCI. In: Towards Practical Brain-Computer Interfaces, ed. by B.Z. Allison, S. Dunne, R. Leeb, J.R. Del Millán, A. Nijholt (Springer, Berlin, Heidelberg 2013) pp. 41–65

    Google Scholar 

  88. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller: Optimal spatial filtering of single trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng. 8, 441–446 (2000)

    Article  Google Scholar 

  89. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.-R. Muller: Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Process. Mag. 25, 41–56 (2008)

    Article  Google Scholar 

  90. B. Blankertz, M. Kawanabe, R. Tomioka, F.U. Hohlefeld, V. Nikulin, K.-R. Müller: Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing, Adv. Neural Inf. Process. 20, 1–8 (2008)

    Google Scholar 

  91. F. Lotte, C. Guan: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms, IEEE Trans. Neural Syst. Rehabil. Eng. 58, 355–362 (2011)

    Google Scholar 

  92. D. Coyle: Neural network based auto association and time-series prediction for biosignal processing in brain-computer interfaces, IEEE Comput. Intell. Mag. 4(4), 47–59 (2009)

    Article  Google Scholar 

  93. H. Zhang, Z.Y. Chin, K.K. Ang, C. Guan, C. Wang: Optimum spatio-spectral filtering network for brain–computer interface, IEEE Trans. Neural Netw. 22, 52–63 (2011)

    Article  Google Scholar 

  94. K.K. Ang, Z.Y. Chin, C. Wang, C. Guan, H. Zhang: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b, Front. Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  95. A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A.H. Phan, S. Choi, H. Lee, Q. Zhao, L. Zhang, Y. Li: Noninvasive BCIs: Multiway signal-processing array decompositions, Computer 41, 34–42 (2008)

    Article  Google Scholar 

  96. D.H. Coyle, G. Prasad, T.M. McGinnity: Improving information transfer rates of BCI by self-organising fuzzy neural network-based multi-step-ahead time series prediction, Proc. 3rd IEEE Syst. Man Cybern. Conf. (2004)

    Google Scholar 

  97. D. Coyle, G. Prasad, T.M. McGinnity: A time-series prediction approach for feature extraction in a brain-computer interface, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 461–467 (2005)

    Article  MATH  Google Scholar 

  98. D. Coyle: Channel and class dependent time-series embedding using partial mutual information improves sensorimotor rhythm based brain-computer interfaces. In: Time Series Analysis, Modeling and Applications – A Computational Intelligence Perspective, ed. by W. Pedrycz (Springer, Berlin, Heidelberg 2013) pp. 249–278

    Chapter  Google Scholar 

  99. A. Schlögl, D. Flotzinger, G. Pfurtscheller: Adaptive autoregressive modeling used for single-trial EEG classification – Verwendung eines Adaptiven Autoregressiven Modells für die Klassifikation von Einzeltrial-EEG-Daten, Biomed. Tech./Biomed. Eng. 42, 162–167 (1997)

    Article  Google Scholar 

  100. E. Haselsteiner, G. Pfurtscheller: Using time-dependent neural networks for EEG classification, IEEE Trans. Rehabil. Eng. 8, 457–463 (2000)

    Article  Google Scholar 

  101. E.M. Forney, C.W. Anderson: Classification of EEG during imagined mental tasks by forecasting with Elman Recurrent Neural Networks, Int. Joint Conf. Neural Netw. (2011) pp. 2749–2755

    Google Scholar 

  102. C. Anderson, E. Forney, D. Hains, A. Natarajan: Reliable identification of mental tasks using time-embedded EEG and sequential evidence accumulation, J. Neural Eng. 8, 025023 (2011)

    Article  Google Scholar 

  103. H.K. Kimelberg: Functions of mature mammalian astrocytes: A current view, Neuroscientist 16, 79–106 (2010)

    Article  Google Scholar 

  104. N.A. Busch, J. Dubois, R. VanRullen: The phase of ongoing EEG oscillations predicts visual perception, J. Neurosci. 29, 7869–7876 (2009)

    Article  Google Scholar 

  105. W.J. Freeman: Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude, Clin. Neurophysiol. 115, 2077–2088 (2004)

    Article  Google Scholar 

  106. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger, N.M. Barbaro, R.T. Knight: High gamma power is phase-locked to theta oscillations in human neocortex, Science 313, 1626–1628 (2006)

    Article  Google Scholar 

  107. C. Mehring, J. Rickert, E. Vaadia, S. De Cardosa Oliveira, A. Aertsen, S. Rotter: Inference of hand movements from local field potentials in monkey motor cortex, Nat. Neurosci. 6, 1253–1254 (2003)

    Article  Google Scholar 

  108. K.J. Miller, E.C. Leuthardt, G. Schalk, R.P.N. Rao, N.R. Anderson, D.W. Moran, J.W. Miller, J.G. Ojemann: Spectral changes in cortical surface potentials during motor movement, J. Neurosci. 27, 2424–2432 (2007)

    Article  Google Scholar 

  109. S. Waldert, H. Preissl, E. Demandt, C. Braun, N. Birbaumer, A. Aertsen, C. Mehring: Hand movement direction decoded from MEG and EEG, J. Neurosci. 28, 1000–1008 (2008)

    Article  Google Scholar 

  110. K. Jerbi, J.-P. Lachaux, K. N'Diaye, D. Pantazis, R.M. Leahy, L. Garnero, S. Baillet: Coherent neural representation of hand speed in humans revealed by MEG imaging, Proc. Natl. Acad. Sci. USA 104, 7676–7681 (2007)

    Article  Google Scholar 

  111. K. Jerbi, O. Bertrand: Cross-frequency coupling in parieto-frontal oscillatory networks during motor imagery revealed by magnetoencephalography, Front. Neurosci. 3, 3–4 (2009)

    Article  Google Scholar 

  112. S.N. Baker: Oscillatory interactions between sensorimotor cortex and the periphery, Curr. Opin. Neurobiol. 17, 649–655 (2007)

    Article  Google Scholar 

  113. D. Rubino, K.A. Robbins, N.G. Hatsopoulos: Propagating waves mediate information transfer in the motor cortex, Nat. Neurosci. 9, 1549–1557 (2006)

    Article  Google Scholar 

  114. R.J. May, H.R. Maier, G.C. Dandy, T.M.K. Gayani Fernando: Non-linear variable selection for artificial neural networks using partial mutual information, Environ. Model. Softw. 23, 1312–1326 (2008)

    Article  Google Scholar 

  115. S. Lemm, C. Schäfer, G. Curio: BCI competition 2003–data set III: Probabilistic modeling of sensorimotor $\upmu$ rhythms for classification of imaginary hand movements, IEEE Trans. Biomed. Eng. 51, 1077–1080 (2004)

    Article  Google Scholar 

  116. D. Coyle, G. Prasad, T.M. McGinnity: Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain-computer interface, IEEE Trans. Syst. Man Cybern. 39, 1458–1471 (2009)

    Article  Google Scholar 

  117. C. Sannelli, C. Vidaurre, K.-R. Müller, B. Blankertz: CSP patches: An ensemble of optimized spatial filters. An evaluation study, J. Neural Eng. 8, 025012 (2011)

    Article  Google Scholar 

  118. C. Vidaurre, M. Kawanabe, P. von Bünau, B. Blankertz, K.R. Müller: Toward unsupervised adaptation of LDA for brain-computer interfaces, IEEE Trans. Biomed. Eng. 58, 587–597 (2011)

    Article  Google Scholar 

  119. P. Herman, G. Prasad, T.M. McGinnity: Computational intelligence approaches to brain signal pattern recognition. In: Pattern Recognition Techniques, Technology and Applications, ed. by B. Verma (InTech, Rijeka 2008) pp. 91–120

    Google Scholar 

  120. J.M. Mendel: Type-2 fuzzy sets and systems: An overview, IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)

    Article  MathSciNet  Google Scholar 

  121. R. Mohammadi, A. Mahloojifar, H. Chen, D. Coyle: EEG based foot movement onset detection with the probabilistic classification vector machine, Lect. Notes Comput. Sci. 7666, 356–363 (2012)

    Article  Google Scholar 

  122. H. Chen, P. Tino, X. Yao: Probabilistic classification vector machines, IEEE Trans. Neural Netw. 20, 901–914 (2009)

    Article  Google Scholar 

  123. C. Vidaurre, B. Blankertz: Towards a cure for BCI illiteracy, Brain Topogr. 23, 194–198 (2010)

    Article  Google Scholar 

  124. A. Schlögl, C. Vidaurre, K.-R. Müller: Adaptive methods in BCI research: An introductory tutorial. In: Brain Computer Interfaces – Revolutionizing Human-Computer Interfaces, ed. by B. Graimann, B. Allison, G. Pfurtscheller (Springer, Berlin, Heidelberg 2010) pp. 331–355

    Google Scholar 

  125. J.R. Wolpaw, N. Birbaumer, W.J. Heetderks, D.J. McFarland, P.H. Peckham, G. Schalk, E. Donchin, L.A. Quatrano, C.J. Robinson, T.M. Vaughan: Brain-computer interface technology: A review of the first international meeting, IEEE Trans. Rehabil. Eng. 8, 164–173 (2000)

    Article  Google Scholar 

  126. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw: Should the parameters of a BCI translation algorithm be continually adapted?, J. Neurosci. Methods 199, 103–107 (2011)

    Article  Google Scholar 

  127. B.A.S. Hasan: Adaptive Methods Exploiting the Time Structure in EEG for Interfaces (University of Essex, Colchester 2010)

    Google Scholar 

  128. C. Vidaurre, C. Sannelli, K.-R. Müller, B. Blankertz: Co-adaptive calibration to improve BCI efficiency, J. Neural Eng. 8, 025009 (2011)

    Article  MATH  Google Scholar 

  129. J.W. Yoon, S.J. Roberts, M. Dyson, J.Q. Gan: Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling, Neural Netw. 22, 1286–1294 (2009)

    Article  Google Scholar 

  130. J.Q. Gan: Self-adapting BCI based on unsupervised learning, 3rd Int. Workshop Brain Comput. Interfaces (2006) pp. 50–51

    Google Scholar 

  131. S. Lu, C. Guan, H. Zhang: Unsupervised brain computer interface based on intersubject information and online adaptation, IEEE Trans. Neural Syst. Rehabil. Eng. 17, 135–145 (2009)

    Article  Google Scholar 

  132. S.E. Eren, M. Grosse-Wentrup, M. Buss: Unsupervised classification for non-invasive brain-computer-interfaces, Proc. Autom. Workshop (VDI Verlag, 2007) pp. 65–66

    Google Scholar 

  133. B.A.S. Hasan, J.Q. Gan: Unsupervised adaptive GMM for BCI, 4th Int. IEEE EMBS Conf. Neural Eng. (2009) pp. 295–298

    Google Scholar 

  134. J. Blumberg, J. Rickert, S. Waldert, A. Schulze-Bonhage, A. Aertsen, C. Mehring: Adaptive classification for brain computer interfaces, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2007) pp. 2536–2539

    Google Scholar 

  135. G. Liu, G. Huang, J. Meng, D. Zhang, X. Zhu: Unsupervised adaptation based on fuzzy c-means for brain-computer interface, 1st Int. Conf. Inform. Sci. Eng. (2009) pp. 4122–4125

    Google Scholar 

  136. P. Shenoy, M. Krauledat, B. Blankertz, R.P.N. Rao, K.-R. Müller: Towards adaptive classification for BCI, J. Neural Eng. 3, R13–23 (2006)

    Article  Google Scholar 

  137. T. Gürel, C. Mehring: Unsupervised adaptation of brain-machine interface decoders, Front. Neurosci. 6, 164 (2012)

    Google Scholar 

  138. M. Sugiyama, M. Krauledat, K.-R. Müller: Covariate shift adaptation by importance weighted cross validation, J. Mach. Learn. Res. 8, 985–1005 (2007)

    MATH  Google Scholar 

  139. A. Satti, C. Guan, D. Coyle, G. Prasad: A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain-computer interface, 20th Int. Conf. Pattern Recogn. (2010) pp. 105–108

    Google Scholar 

  140. R. Mohammadi, A. Mahloojifar, D. Coyle: Unsupervised short-term covariate shift minimization for self-paced BCI, IEEE Symp. Comput. Intell. Cogn. Algorithm. Mind, Brain (2013) pp. 101–106

    Google Scholar 

  141. A. Satti, D. Coyle, G. Prasad: Continuous EEG classification for a self-paced BCI, 4th Int. IEEE/EMBS Conf. Neural Eng. (2009) pp. 315–318

    Google Scholar 

  142. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, G. Pfurtscheller: Conversion of EEG activity into cursor movement by a brain-computer interface (BCI), IEEE Trans. Neural Syst. Rehabil. Eng. 12, 331–338 (2004)

    Article  Google Scholar 

  143. M. Arvaneh, C. Guan, K.K. Ang, C. Quek: EEG data space adaptation to reduce intersession non-stationarity in brain-computer interface, Neural Comput. 25(8), 2146–2171 (2013)

    Article  MathSciNet  Google Scholar 

  144. G. Schalk: Brain-computer symbiosis, J. Neural Eng. 5, P1–P15 (2008)

    Article  Google Scholar 

  145. C.M. Reed, N.I. Durlach: Note on information transfer rates in human communication, Presence: Teleoper. Virtual Environ. 7, 509–518 (1998)

    Article  Google Scholar 

  146. I.S. MacKenzie: Fitts' Law as a research and design tool in human-computer interaction, Human-Comput. Interact. 7, 91–139 (1992)

    Article  Google Scholar 

  147. Z.C. Chao, Y. Nagasaka, N. Fujii: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys, Front. Neuroeng. 3, 3–13 (2010)

    Google Scholar 

  148. G. Schalk: Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces?, Front. Neuroeng. 3, 9 (2010)

    Google Scholar 

  149. A. Barbero, M. Grosse-Wentrup: Biased feedback in brain-computer interfaces, J. Neuroeng. Rehabil. 7, 34 (2010)

    Article  Google Scholar 

  150. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442, 164–171 (2006)

    Article  Google Scholar 

  151. J.M. Carmena: Becoming bionic, IEEE Spect. 49, 24–29 (2012)

    Article  Google Scholar 

  152. T. W. Berger, J. K. Chapin, G. A. Gerhardt, D. J. McFarland, D. M. Taylor, P. A. Tresco: WTEC Panel Report on International Assessment of Research and Development in Brain-Computer Interfaces (2007)

    Google Scholar 

  153. R. Kurzweil: The Age of Spiritual Machines: When Computers Exceed Human Intelligence (Penguin, New York 2000)

    Google Scholar 

  154. P. Barnard, P. Dayan, P. Redgrave: Action. In: Cognitive Systems: Information Processing Meets Brain Science, ed. by R. Morris, L. Tarassenki, M. Kenward (Elsevier Academic, London 2006)

    Google Scholar 

  155. G.L. Chadderdon, S.A. Neymotin, C.C. Kerr, W.W. Lytton: Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex, PloS ONE 7, e47251 (2012)

    Article  Google Scholar 

  156. K. Doya: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?, Neural Netw. 12, 961–974 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Coyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coyle, D., Sosnik, R. (2015). Neuroengineering. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43505-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43505-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43504-5

  • Online ISBN: 978-3-662-43505-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics