Foundations of Rough Sets

  • Andrzej Skowron
  • Andrzej Jankowski
  • Roman W. Swiniarski


The rough set (RS) approach was proposed by Pawlak as a tool to deal with imperfect knowledge. Over the years the approach has attracted attention of many researchers and practitioners all over the world, who have contributed essentially to its development and applications. This chapter discusses the RS foundations from rudiments to challenges.


Decision System Approximation Space Decision Class Information Granule Granular Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

artificial intelligence


active media technology


approximate reasoning


complex granule


computing with words


granular computing


interactive granular computing


interactive rough granular computing


knowledge discovery and data mining


minimum description length


perception-based computing


rough set


structured query language


variable precision rough set model


wisdom web of things


Wisdom Technology


  1. [21.1]
    Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning about Data, Theory and Decision Library D, Vol. 9 (Kluwer, Dordrecht 1991)CrossRefMATHGoogle Scholar
  2. [21.2]
    Z. Pawlak: Rough sets, Int. J. Comp. Inform. Sci. 11, 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. [21.3]
    Z. Pawlak, A. Skowron: Rudiments of rough sets, Inform. Sci. 177(1), 3–27 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. [21.4]
    Z. Pawlak, A. Skowron: Rough Sets: Some Extensions, Inform. Sci. 177(1), 28–40 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. [21.5]
    Z. Pawlak, A. Skowron: Rough sets and Boolean reasoning, Inform. Sci. 177(1), 41–73 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. [21.6]
    A. Skowron, Z. Suraj (Eds.): Rough Sets and Intelligent Systems. Professor Zdzislaw Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42/43 (Springer, Berlin, Heidelberg 2013)Google Scholar
  7. [21.7]
    I. Chikalov, V. Lozin, I. Lozina, M. Moshkov, H.S. Nguyen, A. Skowron, B. Zielosko: Three Approaches to Data Analysis. Test Theory, Rough Sets and Logical Analysis of Data, Intelligent Systems Reference Library, Vol. 41 (Springer, Berlin, Heidelberg 2012)MATHGoogle Scholar
  8. [21.8]
    Ch. Cornelis (Ed.): International Rough Sets Society, online available from:
  9. [21.9]
    Z. Suraj: Rough Set Database System, online available from:
  10. [21.10]
    R. Keefe: Theories of Vagueness, Cambridge Studies in Philosophy (Cambridge Univ. Press, Cambridge 2000)Google Scholar
  11. [21.11]
    S. Read: Thinking about Logic: An Introduction to the Philosophy of Logic (Oxford Univ. Press, Oxford 1994)Google Scholar
  12. [21.12]
    G. Frege: Grundgesetze der Arithmetik, Vol. 2 (Verlag von Hermann Pohle, Jena 1903)MATHGoogle Scholar
  13. [21.13]
    G.W. Leibniz: Discourse on Metaphysics. In: Philosophical Essays (1686), ed. by R. Ariew, D. Garber (Hackett, Indianapolis 1989) pp. 35–68Google Scholar
  14. [21.14]
    T. Hastie, R. Tibshirani, J.H. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, Heidelberg 2001)CrossRefMATHGoogle Scholar
  15. [21.15]
    J. Rissanen: Modeling by shortes data description, Automatica 14, 465–471 (1978)CrossRefMATHGoogle Scholar
  16. [21.16]
    J. Łukasiewicz: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In: Jan Łukasiewicz – Selected Works, ed. by L. Borkowski (North Holland/Polish Scientific Publishers, Amsterdam, Warsaw 1970) pp. 16–63Google Scholar
  17. [21.17]
    J. Barwise, J. Seligman: Information Flow: The Logic of Distributed Systems (Cambridge Univ. Press, Cambridge 1997)CrossRefMATHGoogle Scholar
  18. [21.18]
    L.A. Zadeh: Fuzzy sets, Inform. Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  19. [21.19]
    G. Boole: The Mathematical Analysis of Logic (G. Bell, London 1847), Reprinted by Philosophical Library, New York 1948MATHGoogle Scholar
  20. [21.20]
    G. Boole: An Investigation of the Laws of Thought (Walton, London 1954)MATHGoogle Scholar
  21. [21.21]
    F.M. Brown: Boolean Reasoning (Kluwer, Dordrecht 1990)CrossRefMATHGoogle Scholar
  22. [21.22]
    D. Slezak: Infobright, online available from:
  23. [21.23]
    V. Vapnik: Statistical Learning Theory (Wiley, New York 1998)MATHGoogle Scholar
  24. [21.24]
    R.S. Michalski: A theory and methodology of inductive learning, Artif. Intell. 20, 111–161 (1983)MathSciNetCrossRefGoogle Scholar
  25. [21.25]
    J. Stepaniuk: Rough-Granular Computing in Knowledge Discovery and Data Mining (Springer, Berlin, Heidelberg 2008)MATHGoogle Scholar
  26. [21.26]
    L. Polkowski: Approximate Reasoning by Parts. An Introduction to Rough Mereology, Intelligent Systems Reference Library, Vol. 20 (Springer, Berlin, Heidelberg 2011)CrossRefGoogle Scholar
  27. [21.27]
    S. Leśniewski: Grungzüge eines neuen Systems der Grundlagen der Mathematik, Fundam. Math. 14, 1–81 (1929)MATHGoogle Scholar
  28. [21.28]
    L. Breiman: Statistical modeling: The two cultures, Stat. Sci. 16(3), 199–231 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. [21.29]
    S. Staab, R. Studer: Handbook on Ontologies, International Handbooks on Information Systems (Springer, Berlin 2004)CrossRefMATHGoogle Scholar
  30. [21.30]
    S.K. Pal, L. Polkowski, A. Skowron: Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies (Springer, Berlin, Heidelberg 2004)CrossRefMATHGoogle Scholar
  31. [21.31]
    W. Pedrycz, S. Skowron, V. Kreinovich (Eds.): Handbook of Granular Computing (Wiley, Hoboken 2008)Google Scholar
  32. [21.32]
    A. Jankowski: Practical Issues of Complex Systems Engineering: Wisdom Technology Approach (Springer, Berlin, Heidelberg 2015), in preparationGoogle Scholar
  33. [21.33]
    D. Goldin, S. Smolka, P. Wegner: Interactive Computation: The New Paradigm (Springer, Berlin, Heidelberg 2006)CrossRefMATHGoogle Scholar
  34. [21.34]
    Z. Pawlak: Concurrent versus sequential – the rough sets perspective, Bulletin EATCS 48, 178–190 (1992)MATHGoogle Scholar
  35. [21.35]
    L. Polkowski: Rough Sets: Mathematical Foundations, Advances in Soft Computing (Physica, Berlin, Heidelberg 2002)CrossRefMATHGoogle Scholar
  36. [21.36]
    M. Chakraborty, P. Pagliani: A Geometry of Approximation: Rough Set Theory – Logic, Algebra and Topology of Conceptual Patterns (Springer, Berlin, Heidelberg 2008)MATHGoogle Scholar
  37. [21.37]
    D.M. Gabbay, S. Hartmann, J. Woods (Eds.): Inductive Logic, Handbook of the History of Logic, Vol. 10 (Elsevier, Amsterdam 2011)MATHGoogle Scholar
  38. [21.38]
    J. Swift: Gulliver's Travels into Several Remote Nations of the World (anonymous publisher, London 1726)Google Scholar
  39. [21.39]
    D.M. Gabbay, C.J. Hogger, J.A. Robinson: Nonmonotonic Reasoning and Uncertain Reasoning, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3 (Clarendon, Oxford 1994)MATHGoogle Scholar
  40. [21.40]
    Z. Pawlak: Rough logic, Bull. Pol. Ac.: Tech. 35(5/6), 253–258 (1987)MathSciNetMATHGoogle Scholar
  41. [21.41]
    P. Doherty, W. Łukaszewicz, A. Skowron, A. Szałas: Knowledge Engineering: A Rough Set Approach, Studies in Fizziness and Soft Computing, Vol. 202 (Springer, Berlin, Heidelberg 2006)MATHGoogle Scholar
  42. [21.42]
    Z. Pawlak: An inquiry into anatomy of conflicts, Inform. Sci. 109, 65–78 (1998)MathSciNetCrossRefGoogle Scholar
  43. [21.43]
    M.J. Moshkov, M. Piliszczuk, B. Zielosko: Partial Covers, Reducts and Decision Rules in Rough Sets – Theory and Applications, Studies in Computational Intelligence, Vol. 145 (Springer, Berlin, Heidelberg 2008)MATHGoogle Scholar
  44. [21.44]
    P. Delimata, M.J. Moshkov, A. Skowron, Z. Suraj: Inhibitory Rules in Data Analysis: A Rough Set Approach, Studies in Computational Intelligence, Vol. 163 (Springer, Berlin, Heidelberg 2009)MATHGoogle Scholar
  45. [21.45]
    Web page of Professor Leslie Valiant, online available from:
  46. [21.46]
    L.A. Zadeh: From computing with numbers to computing with words – From manipulation of measurements to manipulation of perceptions, IEEE Trans. Circuits Syst. 45, 105–119 (1999)MathSciNetCrossRefMATHGoogle Scholar
  47. [21.47]
    J. Pearl: Causal inference in statistics: An overview, Stat. Surv. 3, 96–146 (2009)MathSciNetCrossRefMATHGoogle Scholar
  48. [21.48]
    D. Kahneman: Maps of Bounded Rationality: Psychology for behavioral economics, Am. Econ. Rev. 93, 1449–1475 (2002)CrossRefGoogle Scholar
  49. [21.49]
    A. Jankowski, A. Skowron: A wistech paradigm for intelligent systems, Lect. Notes Comput. Sci. 4374, 94–132 (2007)CrossRefGoogle Scholar
  50. [21.50]
    A. Jankowski, A. Skowron: Logic for artificial intelligence: The Rasiowa–Pawlak school perspective. In: Andrzej Mostowski and Foundational Studies, ed. by A. Ehrenfeucht, V. Marek, M. Srebrny (IOS, Amsterdam 2008) pp. 106–143Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrzej Skowron
    • 1
  • Andrzej Jankowski
    • 2
  • Roman W. Swiniarski
    • 3
  1. 1.Faculty of Mathematics, Computer Science and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Knowledge Technology FoundationWarsawPoland
  3. 3.Springer-Verlag GmbHHeidelbergGermany

Personalised recommendations