Skip to main content

Quantum Error Correction and Quantum Cryptography

  • Chapter
  • First Online:
Introduction to Quantum Information Science

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4752 Accesses

Abstract

The quantum error correction is a technology to transmit the quantum state via a noisy quantum channel. This chapter begins with the description of the classical error correction based on an algebraic method. Using the knowledge of the classical error correction. This chapter explains the quantum error correction. Then, based on the property of the quantum error correction, we treat the secure communication of the classical message via a quantum channel and the quantum cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sum in the vector space is written as \(+\), and the sum in the finite field \(\mathbb {F}_2\) is written as \(\oplus \). Since the sum \(+\) has the same meaning as the difference \(-\) in a vector space over the finite field \(\mathbb {F}_2\), we unify them to \(+\).

  2. 2.

    In the general noise, the probability flipping \(0\) to \(1\) dose not coincide with that the probability flipping \(1\) to \(0\). In the following, we assume that these two kinds of flipping probabilities are the same. Then, the above type description is possible.

  3. 3.

    \(\wedge \) is the multiplication over the finite field \(\mathbb {F}_2\), and is given in Table 3.1.

  4. 4.

    It is known that this assumption does not change the asymptotically optimal transmission rate [12].

  5. 5.

    Renner [26] proposed the criterion \(\Vert \rho _\mathrm{AE} -\rho _{\mathop {\mathrm{mix}}\nolimits }\otimes \rho _\mathrm{E} \Vert _1\) so called universal composability, in which, the reduced density \(\rho _\mathrm{A}\) is replaced by the completely mixed state \(\rho _{\mathop {\mathrm{mix}}\nolimits }\). In our case, since \(\rho _\mathrm{A}\) is the completely mixed state, both criteria coincide with each other.

  6. 6.

    An evaluation formula slightly different from Theorem 9.5 is known [27].

  7. 7.

    As another method for the security analysis, the method based on the universal2 property of the Hash function is knwon [26].

  8. 8.

    In this book, when Alice’s basis is the same as Bob’s basis, the basis is called matched.

References

  1. M.A. Nielsen, I.L. Chuang, in Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  2. C.E. Shannon, Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  3. C.E. Shannon, W. Weaver, in The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949)

    Google Scholar 

  4. J.L. Carter, M.N. Wegman, J. Comput. System Sci. 18, 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. D.R. Stinson, J. Combin. Math. Combin. Comput. 42, 3–31 (2002)

    MATH  MathSciNet  Google Scholar 

  6. T. Tsurumaru, M. Hayashi, IEEE Trans. Inform. Theory 59, 4700–4717 (2013)

    Google Scholar 

  7. R.G. Gallager, in Information Theory and Reliable Communication (Wiley, New York, 1968)

    Google Scholar 

  8. M. Hayashi, IEEE Trans. Inform. Theory 57, 3989–4001 (2011)

    Article  MathSciNet  Google Scholar 

  9. A.D. Wyner, Bell Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Weyl, in Gruppentheorie und Quantenmechanik (Verlag von S. Hirzel, Leipzig 1928) (English translation by H. P. Robertson, The Theory of Groups and Quantum Mechanics (1931), reprinted by Dover (1950))

    Google Scholar 

  11. P.W. Shor, Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  12. H. Barnum, H. Knill, M.A. Nielsen, IEEE. Trans. Inform. Theory 46, 1317–1329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Phys. Rev. Lett. 78, 405–408 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, IEEE Trans. Inform. Theory 44, 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Gottesman, Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Hamada, Int. J. Quantum Inf. 1, 443–463 (2003)

    Article  MATH  Google Scholar 

  17. A.R. Calderbank, P.W. Shor, Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  18. A.M. Steane, Proc. Roy. Soc. Lond. A 452, 2551–2577 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Hamada, J. Phys. A: Math. Gen. 37, 8303–8328 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. S. Watanabe, T. Matsumoto, T. Uyematsu, Int. J. Quantum Inf. 4, 935–946 (2006)

    Article  MATH  Google Scholar 

  21. M. Hayashi, Phys. Rev. A 74, 022307 (2006)

    Article  ADS  Google Scholar 

  22. M. Hayashi, A Group Theoretic Approach to Quantum Information (Kyoritsu-shuppan, Tokyo, 2014)

    Google Scholar 

  23. B.W. Schumacher, Phys. Rev. A. 54, 2614–2628 (1996)

    Article  ADS  Google Scholar 

  24. B. Schumacher, M.D. Westmoreland, Phys. Rev. A 56, 131–138 (1997)

    Article  ADS  Google Scholar 

  25. T. Miyadera, Phys. Rev. A 73, 042317 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Renner, Security of Quantum Key Distribution PhD thesis, ETH Zurich (2005), arXiv:quant-ph/0512258.

  27. M. Hayashi, Phys. Rev. A 76, 012329 (2007)

    Article  ADS  Google Scholar 

  28. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Hamada, Phys. Rev. A 68, 012301 (2003)

    Article  ADS  Google Scholar 

  30. P.W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  31. C.H. Bennett, G. Brassard, in Proceeding of IEEE International Conference on Computers, Systems and Signal Processing, (1984) pp. 175–179

    Google Scholar 

  32. D. Mayers, in Advances in Cryptography: Proceedings of Crypto’96. Lecture Notes in Computer Science, vol. 1109 (Springer, New York, 1996), pp. 343–357

    Google Scholar 

  33. D. Mayers, J. Assoc. Comp. Mach. 48, 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  34. M. Hayashi, T. Tsurumaru, New J. Phys. 14, 093014 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M., Ishizaka, S., Kawachi, A., Kimura, G., Ogawa, T. (2015). Quantum Error Correction and Quantum Cryptography. In: Introduction to Quantum Information Science. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43502-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43502-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43501-4

  • Online ISBN: 978-3-662-43502-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics